Come posso campionare da una distribuzione della miscela, e in particolare una miscela di distribuzioni normali in R
? Ad esempio, se volessi provare da:
come potrei farlo?
Come posso campionare da una distribuzione della miscela, e in particolare una miscela di distribuzioni normali in R
? Ad esempio, se volessi provare da:
come potrei farlo?
Risposte:
È buona prassi evitare for
loop in R
per motivi di prestazioni. Una soluzione alternativa che sfrutta il fatto rnorm
è vettorializzata:
N <- 100000
components <- sample(1:3,prob=c(0.3,0.5,0.2),size=N,replace=TRUE)
mus <- c(0,10,3)
sds <- sqrt(c(1,1,0.1))
samples <- rnorm(n=N,mean=mus[components],sd=sds[components])
samples <- rnorm(N)*sds[components]+mus[components]
. Trovo più facile da leggere :)
In generale, uno dei modi più semplici per campionare da una distribuzione della miscela è il seguente:
Passaggi dell'algoritmo
1) Genera una variabile casuale
2) Se intervallo, dove p k corrisponde alla probabilità del componente k t h del modello di miscela, quindi genera da la distribuzione del componente k t h
3) Ripetere i passaggi 1) e 2) fino ad ottenere la quantità desiderata di campioni dalla distribuzione della miscela
Ora usando l'algoritmo generale indicato sopra, è possibile campionare dalla combinazione di normali di esempio usando il R
codice seguente :
#The number of samples from the mixture distribution
N = 100000
#Sample N random uniforms U
U =runif(N)
#Variable to store the samples from the mixture distribution
rand.samples = rep(NA,N)
#Sampling from the mixture
for(i in 1:N){
if(U[i]<.3){
rand.samples[i] = rnorm(1,0,1)
}else if(U[i]<.8){
rand.samples[i] = rnorm(1,10,1)
}else{
rand.samples[i] = rnorm(1,3,.1)
}
}
#Density plot of the random samples
plot(density(rand.samples),main="Density Estimate of the Mixture Model")
#Plotting the true density as a sanity check
x = seq(-20,20,.1)
truth = .3*dnorm(x,0,1) + .5*dnorm(x,10,1) + .2*dnorm(x,3,.1)
plot(density(rand.samples),main="Density Estimate of the Mixture Model",ylim=c(0,.2),lwd=2)
lines(x,truth,col="red",lwd=2)
legend("topleft",c("True Density","Estimated Density"),col=c("red","black"),lwd=2)
Che genera:
e come controllo di sanità mentale:
R
set.seed(8) # this makes the example reproducible
N = 1000 # this is how many data you want
probs = c(.3,.8) # these are *cumulative* probabilities; since they
# necessarily sum to 1, the last would be redundant
dists = runif(N) # here I'm generating random variates from a uniform
# to select the relevant distribution
# this is where the actual data are generated, it's just some if->then
# statements, followed by the normal distributions you were interested in
data = vector(length=N)
for(i in 1:N){
if(dists[i]<probs[1]){
data[i] = rnorm(1, mean=0, sd=1)
} else if(dists[i]<probs[2]){
data[i] = rnorm(1, mean=10, sd=1)
} else {
data[i] = rnorm(1, mean=3, sd=.1)
}
}
# here are a couple of ways of looking at the results
summary(data)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# -3.2820 0.8443 3.1910 5.5350 10.0700 13.1600
plot(density(data))
ifelse()
nell'affermazione, ma dovrò scoprirlo più tardi. Ho sostituito quel codice con un ciclo.
R
findInterval()
cumsum()
mu
s
p
mix <- function(n,mu,s,p) { ii <- findInterval(runif(n),cumsum(p))+1; x <- rnorm(n,mean=mu[ii],sd=sqrt(s[ii])); return(x); }
findInterval()
comando prima, tuttavia, mi piace scrivere qui il codice nel modo più semplice possibile perché voglio che sia uno strumento per comprendere piuttosto che per l'efficienza.
Ho già dato risposte perfette, quindi per coloro che vogliono ottenere questo risultato in Python, ecco la mia soluzione:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
mu = [0, 10, 3]
sigma = [1, 1, 1]
p_i = [0.3, 0.5, 0.2]
n = 10000
x = []
for i in range(n):
z_i = np.argmax(np.random.multinomial(1, p_i))
x_i = np.random.normal(mu[z_i], sigma[z_i])
x.append(x_i)
def univariate_normal(x, mean, variance):
"""pdf of the univariate normal distribution."""
return ((1. / np.sqrt(2 * np.pi * variance)) *
np.exp(-(x - mean)**2 / (2 * variance)))
a = np.arange(-7, 18, 0.01)
y = p_i[0] * univariate_normal(a, mean=mu[0], variance=sigma[0]**2) + p_i[1] * univariate_normal(a, mean=mu[1], variance=sigma[0]**2)+ p_i[2] * univariate_normal(a, mean=mu[2], variance=sigma[0]**2)
fig, ax = plt.subplots(figsize=(8, 4))
ax.hist(x, bins=100, density=True)
ax.plot(a, y)