È possibile utilizzare il metodo di cattura-ricattura , implementato anche come il pacchetto Rcapture R .
Ecco un esempio, codificato in R. Supponiamo che il servizio web abbia N = 1000 articoli. Faremo n = 300 richieste. Genera un campione casuale in cui, numerando gli elementi da 1 a k, dove k è quanti elementi diversi abbiamo visto.
N = 1000; population = 1:N # create a population of the integers from 1 to 1000
n = 300 # number of requests
set.seed(20110406)
observation = as.numeric(factor(sample(population, size=n,
replace=TRUE))) # a random sample from the population, renumbered
table(observation) # a table useful to see, not discussed
k = length(unique(observation)) # number of unique items seen
(t = table(table(observation)))
Il risultato della simulazione è
1 2 3
234 27 4
quindi tra le 300 richieste c'erano 4 oggetti visti 3 volte, 27 oggetti visti due volte e 234 oggetti visti una sola volta.
Ora stimare N da questo esempio:
require(Rcapture)
X = data.frame(t)
X[,1]=as.numeric(X[,1])
desc=descriptive(X, dfreq=TRUE, dtype="nbcap", t=300)
desc # useful to see, not discussed
plot(desc) # useful to see, not discussed
cp=closedp.0(X, dfreq=TRUE, dtype="nbcap", t=300, trace=TRUE)
cp
Il risultato:
Number of captured units: 265
Abundance estimations and model fits:
abundance stderr deviance df AIC
M0** 265.0 0.0 2.297787e+39 298 2.297787e+39
Mh Chao 1262.7 232.5 7.840000e-01 9 5.984840e+02
Mh Poisson2** 265.0 0.0 2.977883e+38 297 2.977883e+38
Mh Darroch** 553.9 37.1 7.299900e+01 297 9.469900e+01
Mh Gamma3.5** 5644623606.6 375581044.0 5.821861e+05 297 5.822078e+05
** : The M0 model did not converge
** : The Mh Poisson2 model did not converge
** : The Mh Darroch model did not converge
** : The Mh Gamma3.5 model did not converge
Note: 9 eta parameters has been set to zero in the Mh Chao model
N^ = 1262,7.
EDIT: per verificare l'affidabilità del metodo sopra ho eseguito il codice sopra su 10000 campioni generati. Il modello Mh Chao convergeva ogni volta. Ecco il riassunto:
> round(quantile(Nhat, c(0, 0.025, 0.25, 0.50, 0.75, 0.975, 1)), 1)
0% 2.5% 25% 50% 75% 97.5% 100%
657.2 794.6 941.1 1034.0 1144.8 1445.2 2162.0
> mean(Nhat)
[1] 1055.855
> sd(Nhat)
[1] 166.8352