Penso che sort
, come presentato lì, non sia tipizzabile su EAL. Non posso provarlo, ma non funziona sull'algoritmo astratto di Lamping senza l'oracolo. Inoltre, sebbene il termine sia in qualche modo intelligente e breve, utilizza strategie molto stravaganti che non sono compatibili con l'EAL.
Ma dietro questa domanda ce n'è una più interessante: "una funzione di ordinamento nat può essere implementata in EAL" ? All'epoca era una domanda molto difficile, ma ora sembra piuttosto banale. Sì, naturalmente. Ci sono molti modi più semplici per farlo. Per un esempio, si può semplicemente riempire un codice codificato NatSet
da Scott con codici codificati da Church Nat
e quindi convertirlo in un elenco. Ecco una dimostrazione completa:
-- sort_example.mel
-- Sorting a list of Church-encoded numbers on the untyped lambda calculus
-- with terms that can be executed by Lamping's Abstract Algorithm without
-- using the Oracle. Test by calling `mel sort_example.mel`, using Caramel,
-- from https://github.com/maiavictor/caramel
-- Constructors for Church-encoded Lists
-- Haskell: `data List = Cons a (List a) | Nil`
Cons head tail = (cons nil -> (cons head (tail cons nil)))
Nil = (cons nil -> nil)
-- Constructors for Church-encoded Nats
-- Haskell: `data Nat = Succ Nat | Zero`
Succ pred = (succ zero -> (succ (pred succ zero)))
Zero = (succ zero -> zero)
---- Constructors for Scott-encoded NatMaps
---- Those work like lists, where `Yep` constructors mean
---- there is a number on that index, `Nah` constructors
---- mean there isn't, and `End` ends the list.
---- Haskell: `data NatMap = Yep NatMap | Nah NatMap | End`
Yep natMap = (yep nah end -> (yep natMap))
Nah natMap = (yep nah end -> (nah natMap))
End = (yep nah end -> end)
---- insert :: Nat (Church) -> NatMap (Scott) -> NatMap (Scott)
---- Inserts a Church-encoded Nat into a Scott-encoded NatMap.
insert nat natMap = (nat succ zero natMap)
succ pred natMap = (natMap yep? nah? end?)
yep? natMap = (Yep (pred natMap))
nah? natMap = (Nah (pred natMap))
end? = (Nah (pred natMap))
zero natMap = (natMap Yep Yep (Yep End))
---- toList :: NatMap (Scott) -> List Nat (Church)
---- Converts a Scott-Encoded NatMap to a Church-encoded List
toList natMap = (go go natMap 0)
go go natMap nat = (natMap yep? nah? end?)
yep? natMap = (Cons nat (go go natMap (Succ nat)))
nah? natMap = (go go natMap (Succ nat))
end? = Nil
---- sort :: List Nat (Church) -> List Nat (Church)
---- Sorts a Church-encoded list of Nats in ascending order.
sort nats = (toList (nats insert End))
-- Test
main = (sort [1,4,5,2,3])
Ecco la forma normale indicizzata da Bruijn di una versione leggermente modificata di quanto sort
sopra, che deve funzionare (x -> (x x))
come primo argomento per funzionare (altrimenti non ha una forma normale):
λλ(((1 λλλ(((1 λλλ((1 3) (((((5 5) 2) λλ(1 ((5 1) 0))) 1) 0)))
λ(((3 3) 0) λλ(1 ((3 1) 0)))) λλ0)) ((0 λλ(((1 λλ(((0 λλλλ(2 (
5 3))) λλλλ(1 (5 3))) λλλ(1 (4 3)))) λ(((0 λλλλ(2 3)) λλλλ(2 3
)) λλλ(2 λλλ0))) 0)) λλλ0)) λλ0)
Abbastanza semplice in retrospettiva.