5
Tecniche per invertire l'ordine dei quantificatori
È noto che, in generale, l'ordine dei quantificatori universali ed esistenziali non può essere invertito. In altre parole, per una formula logica generale ,ϕ(⋅,⋅)ϕ(⋅,⋅)\phi(\cdot,\cdot) (∀x)(∃y)ϕ(x,y)⇎(∃y)(∀x)ϕ(x,y)(∀x)(∃y)ϕ(x,y)⇎(∃y)(∀x)ϕ(x,y)(\forall x)(\exists y) \phi(x,y) \quad \not\Leftrightarrow \quad (\exists y)(\forall x) \phi(x,y) D'altra parte, sappiamo che il lato destro è più restrittivo del lato sinistro; cioè, (∃y)(∀x)ϕ(x,y)⇒(∀x)(∃y)ϕ(x,y)(∃y)(∀x)ϕ(x,y)⇒(∀x)(∃y)ϕ(x,y)(\exists …