Serie temporali altamente irregolari


10

Ho dati per la popolazione di un numero di pesci diversi, campionati per un periodo di circa 5 anni, ma in un modello molto irregolare. A volte ci sono mesi tra i campioni, a volte ci sono diversi campioni in un mese. Ci sono anche molti 0 conteggi

Come gestire tali dati?

Posso rappresentarlo abbastanza facilmente in R, ma i grafici non sono particolarmente illuminanti, perché sono molto irregolari.

In termini di modellistica - con specie modellate in funzione di varie cose - forse un modello misto (alias modello multilivello).

Eventuali riferimenti o idee sono benvenuti

Alcuni dettagli in risposta ai commenti

Ci sono circa 15 specie.

Sto provando sia a farmi un'idea di eventuali tendenze o stagionalità in ciascun pesce, sia a vedere come le specie sono correlate tra loro (il mio cliente originariamente voleva una semplice tabella di correlazioni)

L'obiettivo è descrittivo e analitico, non predittivo

Ulteriori modifiche: ho trovato questo articolo di K. Rehfield et al., Che suggerisce l'uso di kernel gaussiani per stimare l'ACF per serie temporali altamente irregolari

http://www.nonlin-processes-geophys.net/18/389/2011/npg-18-389-2011.pdf


1
Non sono il ragazzo giusto per rispondere alla tua domanda, ma un modello multilivello sembra ragionevole. Qualche suggerimento su quanto sono grandi i campioni, quante specie ci sono e come vengono conteggiati gli zero? (All'ultimo punto, i tentativi di campionamento su campioni casuali sono o distorti, come se avessi appena ottenuto i conteggi da una gara di pesca del basso che probabilmente non produrrà alcun pesce gatto?)
Wayne,

1
"Trattare con" significa esattamente cosa? Per alcune idee su come affrontare i tempi irregolari cerca questo sito su "+ irregolare + tempo"
whuber

Puoi chiarire il campionamento e l'obiettivo? Ad esempio questa cattura-ripresa è? È una rete inserita in un flusso per un determinato periodo di tempo, senza rilascio? Stai cercando di stimare le dimensioni future del campione o la popolazione più ampia da cui viene estratto un campione? I campioni provengono da 1 o più posizioni? Non c'è niente di sbagliato nelle serie temporali irregolari, ma è un po 'difficile capire la connessione tra eventi di campionamento e tra i campioni e alcune variabili target (ad esempio una risposta del modello). Inoltre, l'obiettivo è predittivo o descrittivo in natura?
Iteratore

2
Perché qualcuno ha votato questa domanda? Perché non provare a contribuire a sviluppare una domanda o una risposta migliore?
Iteratore

2
@Iterator Perché anche adesso, dopo "ulteriori modifiche", qui non c'è una domanda chiara. Il downvote (espresso dopo che non è stata osservata alcuna risposta al mio primo commento) è stato posto per incoraggiare l'OP a fornire i miglioramenti necessari, nonché un segnale dell'unica forma parzialmente formata della domanda così com'era. Non è compito di tutti i lettori (né delle mod, del resto) indovinare cosa si intende!
whuber

Risposte:


10

Ho trascorso un bel po 'di tempo a costruire un quadro generale per serie temporali irregolari: http://www.eckner.com/research.html

Inoltre, ho scritto un articolo sulla stima della tendenza e della stagionalità per le serie temporali con spaziatura irregolare.

Spero che i risultati siano utili!


5
Grazie! Quell'analisi è stata molto tempo fa e non la sto più facendo, ma cose simili potrebbero ripresentarsi; e altri cercano molto queste discussioni, quindi il tuo commento non viene sprecato.
Peter Flom

Grazie per l'informazione (e in effetti anni dopo qualcuno su Internet lo sta cercando!), Ma il link è morto.
Agganciato l'

2

Non so se un modello misto sia molto appropriato (usando i pacchetti standard in cui la struttura dell'effetto casuale è un predittore lineare), a meno che tu non pensi che i dati in tutti i punti temporali dovrebbero essere scambiabili tra loro in un certo senso (nel qual caso gli intervalli irregolari non sono un problema) - non modellerebbe davvero l'autocorrelazione temporale in modo ragionevole. È possibile che tu possa ingannare lmer () nel fare una sorta di cosa autogressiva, ma come esattamente faresti che mi sfugge in questo momento (forse non sto pensando direttamente). Inoltre, non sono sicuro di quale sia la "variabile di raggruppamento" che induce l'autocorrelazione nello scenario del modello misto.

Se l'autocorrelazione temporale è un parametro fastidioso e non ti aspetti che lo sia anchedi grandi dimensioni, quindi è possibile raggruppare i dati in epoche che sono essenzialmente disgiunte l'una dall'altra in termini di correlazione (ad esempio, separare le serie temporali nei punti in cui non vi sono mesi senza dati) e visualizzarle come repliche indipendenti. Potresti quindi fare qualcosa di simile a un GEE su questo set di dati modificato in cui il "cluster" è definito dall'epoca in cui ti trovi e le voci della matrice di correlazione funzionante sono una funzione di quanto distanti sono state fatte le osservazioni. Se la tua funzione di regressione è corretta, otterrai comunque stime coerenti dei coefficienti di regressione, anche se la struttura di correlazione è errata. Ciò consentirebbe anche di modellarlo come dati di conteggio utilizzando, ad esempio, il log-link (come si farebbe normalmente nella regressione di Poisson). Potresti anche costruire una correlazione differenziale tra le specie, dove ogni punto temporale è visto come un vettore multivariato di specie conta con un'associazione che decade temporaneamente tra punti temporali. Ciò richiederebbe un po 'di pre-elaborazione per ingannare i pacchetti GEE standard nel fare questo.

Ys,Ytu,v

cov(Ys,Yt)=fθ(s,t,u,v)

fθ


Grazie @macro. Io penso che un modello misto potrebbe essere OK perché sono spesso utilizzati per i dati che sono annidati nel tempo; Non sono così interessato a modellare l'autocorrelazione, cioè è un fastidio. Sono d'accordo che il tempo non sarà lineare, ma posso aggiungere effetti del tempo (non sono ancora sicuro di quali, ma posso esplorarlo). Non ho MPLUS, ma ho R e SAS.
Peter Flom

1
Sto solo dicendo che un modello misto standard potrebbe non essere appropriato in questa situazione. L'intercettazione casuale è inutile se non pensi che i punti temporali siano scambiabili in termini di correlazione (cioè offrirebbe solo un'approssimazione nel mondo della "correlazione scambiabile" alla tua vera struttura di correlazione). Includere pendenze casuali nel tempo indica che pensi che la traiettoria si "stia dirigendo da qualche parte" nel tempo - poiché la trama non è stata molto illuminante per te, questo probabilmente non sta accadendo. Devo ammettere che potresti essere in grado di ingannare lmer () nel fare qualcosa di più appropriato, però.
Macro

2
+1 Una buona risposta concisa che affronta tutti i punti principali che avrei pensato di affrontare e altro ancora. Per quanto riguarda i pacchetti in R, una ricerca su Google di CRAN, per [regressione temporale di Poisson] presenta diversi pacchetti. Il surveillancepacchetto potrebbe avere la funzionalità desiderata. Questo tipo di modellistica non è raro negli studi ecologici, quindi è probabilmente meglio trovare un buon pacchetto negli angoli ecologici di CRAN.
Iteratore
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.