Domande taggate «multilevel-analysis»

Analisi statistica di set di dati comprendenti diversi livelli di gerarchia (ad es. Studenti nidificati in classi nidificate in scuole o previsioni gerarchiche). Per domande sui modelli misti utilizzare il tag [modello misto]. Per effetti casuali nidificati, utilizzare [dati nidificati].

1
Effetti casuali incrociati vs nidificati: in che modo differiscono e come vengono specificati correttamente in lme4?
Ecco come ho compreso gli effetti casuali nidificati o incrociati: Gli effetti casuali nidificati si verificano quando un fattore di livello inferiore appare solo all'interno di un determinato livello di un fattore di livello superiore. Ad esempio, gli alunni delle classi in un determinato momento. In lme4ho pensato che rappresentiamo …

8
Genera una variabile casuale con una correlazione definita con una o più variabili esistenti
Per uno studio di simulazione devo generare variabili casuali che mostrano una correlazione (popolazione) predefinita a una variabile esistente .YYY Ho esaminato i Rpacchetti copulae CDVineche possono produrre distribuzioni multivariate casuali con una determinata struttura di dipendenza. Tuttavia, non è possibile fissare una delle variabili risultanti su una variabile esistente. …




5
Come gestire i dati gerarchici / nidificati nell'apprendimento automatico
Spiegherò il mio problema con un esempio. Supponiamo di voler prevedere il reddito di un individuo in base ad alcuni attributi: {Età, Genere, Paese, Regione, Città}. Hai un set di dati di allenamento come questo train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 


1
I gradi di libertà possono essere un numero non intero?
Quando uso GAM, mi dà DF residuo è (ultima riga nel codice). Cosa significa? Andando oltre l'esempio GAM, in generale, il numero di gradi di libertà può essere un numero non intero?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 


2
Perché una
sfondo Uno dei punti deboli più comunemente usati prima della varianza è la gamma inversa con i parametri (Gelman 2006) .α = 0,001 , β= 0,001α=0.001,β=0.001\alpha =0.001, \beta=0.001 Tuttavia, questa distribuzione ha un IC al 90% di circa .[ 3 × 1019, ∞ ][3×1019,∞][3\times10^{19},\infty] library(pscl) sapply(c(0.05, 0.95), function(x) qigamma(x, 0.001, …






Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.