1
Previsione di serie storiche usando LSTM: importanza di rendere stazionarie le serie storiche
In questo link su Stationarity e differenziazione , è stato menzionato che modelli come ARIMA richiedono una serie temporale stazionaria per le previsioni poiché le proprietà statistiche come media, varianza, autocorrelazione ecc. Sono costanti nel tempo. Dato che gli RNN hanno una migliore capacità di apprendere relazioni non lineari ( …