2
Supponiamo che
Qual è il modo più semplice per vedere che la seguente affermazione è vera? Supponiamo che Y1,…,Yn∼iidExp(1)Y1,…,Yn∼iidExp(1)Y_1, \dots, Y_n \overset{\text{iid}}{\sim} \text{Exp}(1) . Mostra ∑ni=1(Yi−Y(1))∼Gamma(n−1,1)∑i=1n(Yi−Y(1))∼Gamma(n−1,1)\sum_{i=1}^{n}(Y_i - Y_{(1)}) \sim \text{Gamma}(n-1, 1) . Y(1)=min1≤i≤nYiY(1)=min1≤i≤nYiY_{(1)} = \min\limits_{1 \leq i \leq n}Y_i Per , ciò significa che f_ {X} (x) = \ dfrac {1} {\ …