Domande taggate «ridge-regression»

Un metodo di regolarizzazione per i modelli di regressione che riduce i coefficienti verso lo zero.

1
La regressione con la regolarizzazione L1 è la stessa di Lazo e con la regolarizzazione L2 è uguale alla regressione della cresta? E come scrivere "Lasso"?
Sono un ingegnere informatico che impara l'apprendimento automatico, in particolare attraverso i corsi di apprendimento automatico di Andrew Ng . Mentre studiavo la regressione lineare con la regolarizzazione , ho trovato termini che confondono: Regressione con regolarizzazione L1 o regolarizzazione L2 LASSO Regressione della cresta Quindi le mie domande: La …





3
Interpretazione della regolarizzazione della cresta nella regressione
Ho diverse domande riguardanti la penalità della cresta nel contesto dei minimi quadrati: βridge=(λID+X′X)−1X′yβridge=(λID+X′X)−1X′y\beta_{ridge} = (\lambda I_D + X'X)^{-1}X'y 1) L'espressione suggerisce che la matrice di covarianza di X è ridotta verso una matrice diagonale, il che significa che (supponendo che le variabili siano standardizzate prima della procedura) verrà ridotta …



2
Il limite dello stimatore della regressione della cresta "varianza unitaria" quando
Considera la regressione della cresta con un vincolo aggiuntivo che richiede che abbia la somma unitaria dei quadrati (equivalentemente, varianza unitaria); se necessario, si può presumere che abbia anche la somma unitaria dei quadrati:y^y^\hat{\mathbf y}yy\mathbf y β^∗λ=argmin{∥y−Xβ∥2+λ∥β∥2}s.t.∥Xβ∥2=1.β^λ∗=arg⁡min{‖y−Xβ‖2+λ‖β‖2}s.t.‖Xβ‖2=1.\hat{\boldsymbol\beta}_\lambda^* = \arg\min\Big\{\|\mathbf y - \mathbf X \boldsymbol \beta\|^2+\lambda\|\boldsymbol\beta\|^2\Big\} \:\:\text{s.t.}\:\: \|\mathbf X \boldsymbol\beta\|^2=1. Qual …







Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.