Domande taggate «decision-trees»

Un albero decisionale è uno strumento di supporto decisionale che utilizza un grafico ad albero o un modello di decisioni e le loro possibili conseguenze, inclusi risultati di eventi casuali, costi delle risorse e utilità. È un modo per visualizzare un algoritmo.





5
ingrandisci la mappa di calore dei nati marini
Creo un corr()df da un df originale. Il corr()df è venuto fuori 70 X 70 ed è impossibile visualizzare il heatmap ... sns.heatmap(df). Se provo a visualizzare il corr = df.corr(), la tabella non si adatta allo schermo e posso vedere tutte le correlazioni. È un modo per stampare l'intero …
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

3
Come prevedere le probabilità in xgboost?
La seguente funzione di previsione fornisce anche -ve valori, quindi non può essere una probabilità. param <- list(max.depth = 5, eta = 0.01, objective="binary:logistic",subsample=0.9) bst <- xgboost(param, data = x_mat, label = y_mat,nround = 3000) pred_s <- predict(bst, x_mat_s2) Ho cercato su google pred_s <- predict(bst, x_mat_s2,type="response") ma non ha …






1
XGBRegressor vs. xgboost.train enorme differenza di velocità?
Se alleno il mio modello utilizzando il seguente codice: import xgboost as xg params = {'max_depth':3, 'min_child_weight':10, 'learning_rate':0.3, 'subsample':0.5, 'colsample_bytree':0.6, 'obj':'reg:linear', 'n_estimators':1000, 'eta':0.3} features = df[feature_columns] target = df[target_columns] dmatrix = xg.DMatrix(features.values, target.values, feature_names=features.columns.values) clf = xg.train(params, dmatrix) termina in circa 1 minuto. Se alleno il mio modello usando il …


3
Gli alberi di regressione possono prevedere continuamente?
Supponiamo che io abbia una funzione regolare come . Ho un set di addestramento e, ovviamente, non conosco anche se posso valutare dove voglio.f(x,y)=x2+y2f(x,y)=x2+y2f(x, y) = x^2+y^2D⊊{((x,y),f(x,y))|(x,y)∈R2}D⊊{((x,y),f(x,y))|(x,y)∈R2}D \subsetneq \{((x, y), f(x,y)) | (x,y) \in \mathbb{R}^2\}ffffff Gli alberi di regressione sono in grado di trovare un modello uniforme della funzione (quindi …


Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.