Domande taggate «decision-trees»

Un albero decisionale è uno strumento di supporto decisionale che utilizza un grafico ad albero o un modello di decisioni e le loro possibili conseguenze, inclusi risultati di eventi casuali, costi delle risorse e utilità. È un modo per visualizzare un algoritmo.


2
Max_depth in scikit è l'equivalente della potatura negli alberi delle decisioni?
Stavo analizzando il classificatore creato usando un albero decisionale. C'è un parametro di ottimizzazione chiamato max_depth nell'albero decisionale di scikit. Questo equivalente di potatura è un albero decisionale? In caso contrario, come potrei potare un albero decisionale usando scikit? dt_ap = tree.DecisionTreeClassifier(random_state=1, max_depth=13) boosted_dt = AdaBoostClassifier(dt_ap, random_state=1) boosted_dt.fit(X_train, Y_train)

3
Relazione tra convoluzione in matematica e CNN
Ho letto la spiegazione della convoluzione e la capisco fino a un certo punto. Qualcuno può aiutarmi a capire come questa operazione si collega alla convoluzione nelle reti neurali convoluzionali? È una funzione simile a un filtro gche applica peso?
10 machine-learning  neural-network  deep-learning  cnn  convolution  machine-learning  ensemble-modeling  machine-learning  classification  data-mining  clustering  machine-learning  feature-selection  convnet  pandas  graphs  ipython  machine-learning  apache-spark  multiclass-classification  naive-bayes-classifier  multilabel-classification  machine-learning  data-mining  dataset  data-cleaning  data  machine-learning  data-mining  statistics  correlation  machine-learning  data-mining  dataset  data-cleaning  data  beginner  career  python  r  visualization  machine-learning  data-mining  nlp  stanford-nlp  dataset  linear-regression  time-series  correlation  anomaly-detection  ensemble-modeling  data-mining  machine-learning  python  data-mining  recommender-system  machine-learning  cross-validation  model-selection  scoring  prediction  sequential-pattern-mining  categorical-data  python  tensorflow  image-recognition  statistics  machine-learning  data-mining  predictive-modeling  data-cleaning  preprocessing  classification  deep-learning  tensorflow  machine-learning  algorithms  data  keras  categorical-data  reference-request  loss-function  classification  logistic-regression  apache-spark  prediction  naive-bayes-classifier  beginner  nlp  word2vec  vector-space-models  scikit-learn  decision-trees  data  programming 

3

2
Quando scegliere la regressione lineare o la regressione dell'albero decisionale o della foresta casuale? [chiuso]
Chiuso . Questa domanda deve essere più focalizzata . Al momento non accetta risposte. Vuoi migliorare questa domanda? Aggiorna la domanda in modo che si concentri su un problema solo modificando questo post . Chiuso 4 anni fa . Sto lavorando a un progetto e ho difficoltà a decidere quale …
10 machine-learning  algorithms  random-forest  linear-regression  decision-trees  machine-learning  predictive-modeling  forecast  r  clustering  similarity  data-mining  dataset  statistics  text-mining  text-mining  data-cleaning  data-wrangling  machine-learning  classification  algorithms  xgboost  data-mining  dataset  dataset  regression  graphs  svm  unbalanced-classes  cross-validation  optimization  hyperparameter  genetic-algorithms  visualization  predictive-modeling  correlation  machine-learning  predictive-modeling  apache-spark  statistics  normalization  apache-spark  map-reduce  r  correlation  confusion-matrix  r  data-cleaning  classification  terminology  dataset  image-classification  machine-learning  regression  apache-spark  machine-learning  data-mining  nlp  parsing  machine-learning  dimensionality-reduction  visualization  clustering  multiclass-classification  evaluation  unsupervised-learning  machine-learning  machine-learning  data-mining  supervised-learning  unsupervised-learning  machine-learning  data-mining  classification  statistics  predictive-modeling  data-mining  clustering  python  pandas  machine-learning  dataset  data-cleaning  data  bigdata  software-recommendation 

4
Interpretazione dell'albero delle decisioni nel contesto dell'importanza delle funzioni
Sto cercando di capire come comprendere appieno il processo decisionale di un modello di classificazione dell'albero decisionale creato con sklearn. I 2 aspetti principali che sto guardando sono una rappresentazione grafica dell'albero e l'elenco delle importazioni delle funzionalità. Quello che non capisco è come viene determinata l'importanza della funzione nel …


2
Informazioni ottenute in R
Ho trovato i pacchetti utilizzati per calcolare "Guadagno delle informazioni" per selezionare gli attributi principali in Albero decisionale C4.5 e ho provato a usarli per calcolare "Guadagno delle informazioni". Ma i risultati del calcolo di ciascun pacchetto sono diversi come il codice seguente. > IG.CORElearn <- attrEval(In_Occu ~ In_Temp+In_Humi+In_CO2+In_Illu+In_LP+Out_Temp+Out_Humi, dataUSE1, …

1
Numero minimo di alberi per il classificatore Foresta casuale
Sto cercando una stima teorica o sperimentale del limite inferiore per il numero di alberi in un classificatore Foresta casuale. Di solito collaudo diverse combinazioni e seleziono quella che (usando la validazione incrociata) fornisce il miglior risultato mediano. Tuttavia, penso che potrebbe esserci un limite inferiore al numero di alberi …
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.