Domande taggate «regression»

Tecniche per l'analisi della relazione tra una (o più) variabili "dipendenti" e variabili "indipendenti".

3
Rete neurale per regressione multipla
Ho un set di dati contenente 34 colonne di input e 8 colonne di output. Un modo per risolvere il problema è prendere i 34 input e creare un modello di regressione individuale per ciascuna colonna di output. Mi chiedo se questo problema possa essere risolto utilizzando un solo modello, …

5
ingrandisci la mappa di calore dei nati marini
Creo un corr()df da un df originale. Il corr()df è venuto fuori 70 X 70 ed è impossibile visualizzare il heatmap ... sns.heatmap(df). Se provo a visualizzare il corr = df.corr(), la tabella non si adatta allo schermo e posso vedere tutte le correlazioni. È un modo per stampare l'intero …
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 




2
Tariffe aeree - Quale analisi dovrebbe essere utilizzata per rilevare il comportamento competitivo e la correlazione dei prezzi?
Voglio indagare sul comportamento di determinazione dei prezzi delle compagnie aeree, in particolare su come le compagnie aeree reagiscono ai prezzi dei concorrenti. Come direi che la mia conoscenza di analisi più complesse è piuttosto limitata, ho fatto principalmente tutti i metodi di base per raccogliere una visione generale dei …

2
Modellazione di serie temporali con spaziatura irregolare
Ho una variabile continua, campionata per un periodo di un anno a intervalli irregolari. Alcuni giorni hanno più di un'osservazione all'ora, mentre altri periodi non hanno nulla per giorni. Ciò rende particolarmente difficile rilevare i modelli nelle serie temporali, perché alcuni mesi (ad esempio ottobre) sono altamente campionati, mentre altri …

1
Quante celle LSTM dovrei usare?
Esistono delle regole empiriche (o regole effettive) relative alla quantità minima, massima e "ragionevole" di celle LSTM che dovrei usare? In particolare mi riferisco a BasicLSTMCell di TensorFlow e num_unitsproprietà. Si prega di supporre che ho un problema di classificazione definito da: t - number of time steps n - …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 


3
Gli alberi di regressione possono prevedere continuamente?
Supponiamo che io abbia una funzione regolare come . Ho un set di addestramento e, ovviamente, non conosco anche se posso valutare dove voglio.f(x,y)=x2+y2f(x,y)=x2+y2f(x, y) = x^2+y^2D⊊{((x,y),f(x,y))|(x,y)∈R2}D⊊{((x,y),f(x,y))|(x,y)∈R2}D \subsetneq \{((x, y), f(x,y)) | (x,y) \in \mathbb{R}^2\}ffffff Gli alberi di regressione sono in grado di trovare un modello uniforme della funzione (quindi …





3

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.