Domande taggate «deep-learning»

Un'area dell'apprendimento automatico riguarda l'apprendimento delle rappresentazioni gerarchiche dei dati, principalmente con reti neurali profonde.


7
Perché l'accuratezza della convalida fluttua?
Ho una CNN a quattro strati per prevedere la risposta al cancro usando i dati della risonanza magnetica. Uso le attivazioni ReLU per introdurre non linearità. L'accuratezza e la perdita del treno aumentano e diminuiscono monotonicamente rispettivamente. Ma la precisione del mio test inizia a fluttuare selvaggiamente. Ho provato a …



5
Come gestire i dati gerarchici / nidificati nell'apprendimento automatico
Spiegherò il mio problema con un esempio. Supponiamo di voler prevedere il reddito di un individuo in base ad alcuni attributi: {Età, Genere, Paese, Regione, Città}. Hai un set di dati di allenamento come questo train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 


4
Come è possibile che la perdita di validazione stia aumentando mentre aumenta anche l'accuratezza della validazione
Sto addestrando una semplice rete neurale sul set di dati CIFAR10. Dopo qualche tempo, la perdita di validazione ha iniziato ad aumentare, mentre aumenta anche l'accuratezza della validazione. La perdita e l'accuratezza del test continuano a migliorare. Com'è possibile? Sembra che se aumenta la perdita di validazione, l'accuratezza dovrebbe diminuire. …

1
I gradi di libertà possono essere un numero non intero?
Quando uso GAM, mi dà DF residuo è (ultima riga nel codice). Cosa significa? Andando oltre l'esempio GAM, in generale, il numero di gradi di libertà può essere un numero non intero?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 

3
Ora non si può dire che i modelli di apprendimento profondo siano interpretabili? Le funzionalità dei nodi?
Per i modelli statistici e di apprendimento automatico, esistono diversi livelli di interpretabilità: 1) l'algoritmo nel suo insieme, 2) parti dell'algoritmo in generale 3) parti dell'algoritmo su input particolari e questi tre livelli si dividono in due parti ciascuno, uno per l'allenamento e uno per la valutazione delle funzioni. Le …







Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.