Domande taggate «tensorflow»

TensorFlow è una libreria open source per l'apprendimento automatico e l'intelligenza artificiale. TensorFlow utilizza grafici del flusso di dati con tensori che scorrono lungo i bordi. Per i dettagli, consultare https://www.tensorflow.org. TensorFlow è rilasciato con una licenza Apache 2.0.

5
Cosa offre di più TensorFlow alle telecamere?
Sono consapevole che Keras funge da interfaccia di alto livello con TensorFlow. Ma mi sembra che le keras possano svolgere molte funzionalità da sole (input di dati, creazione di modelli, formazione, valutazione). Inoltre, alcune delle funzionalità di TensorFlow possono essere trasferite direttamente alle telecamere (ad es. È possibile utilizzare una …
16 keras  tensorflow 


5
ingrandisci la mappa di calore dei nati marini
Creo un corr()df da un df originale. Il corr()df è venuto fuori 70 X 70 ed è impossibile visualizzare il heatmap ... sns.heatmap(df). Se provo a visualizzare il corr = df.corr(), la tabella non si adatta allo schermo e posso vedere tutte le correlazioni. È un modo per stampare l'intero …
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

1
PyTorch contro Tensorflow desideroso
Google ha recentemente incluso nelle build notturne di tensorflow la sua modalità Eager , un'API imperativa per accedere alle capacità di calcolo di tensorflow. In che modo il desideroso di Tensorflow si confronta con PyTorch? Alcuni aspetti che potrebbero influenzare il confronto potrebbero essere: Vantaggi e svantaggi di desideroso a …

1
Come aggiungere funzionalità non immagine lungo le immagini laterali come input delle CNN
Sto addestrando una rete neurale convoluzionale per classificare le immagini in condizioni di nebbia (3 classi). Tuttavia, per ciascuna delle circa 150.000 immagini ho anche quattro variabili meteorologiche disponibili che potrebbero aiutare a prevedere le classi delle immagini. Mi chiedevo come avrei potuto aggiungere le variabili meteorologiche (ad es. Temperatura, …

4
Rilevamento di anomalie con la rete neurale
Ho un grande set di dati multidimensionale che viene generato ogni giorno. Quale sarebbe un buon approccio per rilevare qualsiasi tipo di "anomalia" rispetto ai giorni precedenti? È un problema adatto che potrebbe essere affrontato con le reti neurali? Eventuali suggerimenti sono apprezzati. informazioni aggiuntive: non ci sono esempi, quindi …

3
Tensorflow Regolazione della funzione di costo per dati sbilanciati
Ho un problema di classificazione con dati altamente squilibrati. Ho letto che il sovracampionamento, il sottocampionamento e la modifica dei costi per risultati categorici sottorappresentati porteranno a un adattamento migliore. Prima che ciò avvenisse, Tensorflow avrebbe classificato ogni input come gruppo di maggioranza (e avrebbe ottenuto una precisione superiore al …

1
Quante celle LSTM dovrei usare?
Esistono delle regole empiriche (o regole effettive) relative alla quantità minima, massima e "ragionevole" di celle LSTM che dovrei usare? In particolare mi riferisco a BasicLSTMCell di TensorFlow e num_unitsproprietà. Si prega di supporre che ho un problema di classificazione definito da: t - number of time steps n - …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

3
Esistono buoni modelli linguistici predefiniti per Python?
Sto prototipando un'applicazione e ho bisogno di un modello linguistico per calcolare la perplessità su alcune frasi generate. Esiste un modello di linguaggio addestrato in Python che posso usare facilmente? Qualcosa di semplice come model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp robert …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 


1
Allenati su lotti a Tensorflow
Attualmente sto provando ad addestrare un modello su un file CSV di grandi dimensioni (> 70 GB con oltre 60 milioni di righe). Per fare ciò sto usando tf.contrib.learn.read_batch_examples. Faccio fatica a capire come questa funzione legge effettivamente i dati. Se sto usando una dimensione batch di es. 50.000, legge …

1
Come definire una metrica delle prestazioni personalizzata in Keras?
Ho provato a definire una funzione metrica personalizzata (punteggio F1) in Keras (backend Tensorflow) in base a quanto segue: def f1_score(tags, predicted): tags = set(tags) predicted = set(predicted) tp = len(tags & predicted) fp = len(predicted) - tp fn = len(tags) - tp if tp>0: precision=float(tp)/(tp+fp) recall=float(tp)/(tp+fn) return 2*((precision*recall)/(precision+recall)) else: …




Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.