Domande taggate «bic»

BIC è l'acronimo di Bayesian Information Criterion. BIC è un metodo di confronto tra modelli. Vedi anche AIC



5
Linee guida AIC nella selezione del modello
Di solito uso il BIC perché intendo che apprezza la parsimonia più fortemente di quanto non faccia l'AIC. Tuttavia, ho deciso di utilizzare un approccio più completo ora e vorrei usare anche AIC. So che Raftery (1995) ha presentato buone linee guida per le differenze BIC: 0-2 è debole, 2-4 …


5
Come gestire i dati gerarchici / nidificati nell'apprendimento automatico
Spiegherò il mio problema con un esempio. Supponiamo di voler prevedere il reddito di un individuo in base ad alcuni attributi: {Età, Genere, Paese, Regione, Città}. Hai un set di dati di allenamento come questo train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 


3
Interpretazione dei numeri AIC e BIC
Sto cercando esempi su come interpretare le stime AIC (criterio di informazione Akaike) e BIC (criterio di informazione bayesiano). La differenza negativa tra i BIC può essere interpretata come la probabilità posteriore di un modello rispetto all'altro? Come posso dirlo a parole? Ad esempio il BIC = -2 può implicare …


1
BIC cerca di trovare un modello vero?
Questa domanda è un seguito o un tentativo di chiarire la possibile confusione riguardo a un argomento che io e molti altri riscontriamo un po 'difficile, per quanto riguarda la differenza tra AIC e BIC. In una bella risposta di @Dave Kellen su questo argomento ( /stats//a/767/30589 ) leggiamo: La …



1
Quale metodo di confronto multiplo utilizzare per un modello lmer: lsmeans o glht?
Sto analizzando un set di dati usando un modello di effetti misti con un effetto fisso (condizione) e due effetti casuali (partecipante a causa del disegno e della coppia all'interno del soggetto). Il modello è stato generato conlme4 pacchetto: exp.model<-lmer(outcome~condition+(1|participant)+(1|pair),data=exp). Successivamente, ho eseguito un test del rapporto di verosimiglianza di …




Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.