Domande taggate «posterior»

Si riferisce alla distribuzione di probabilità dei parametri condizionati sui dati nelle statistiche bayesiane.




3
Come può un precedente improprio portare a una corretta distribuzione posteriore?
Sappiamo che nel caso di un'adeguata distribuzione precedente, P(θ∣X)=P(X∣θ)P(θ)P(X)P(θ∣X)=P(X∣θ)P(θ)P(X)P(\theta \mid X) = \dfrac{P(X \mid \theta)P(\theta)}{P(X)} ∝P(X∣θ)P(θ)∝P(X∣θ)P(θ) \propto P(X \mid \theta)P(\theta) . La solita giustificazione per questo passaggio è che la distribuzione marginale di , , è costante rispetto a e può quindi essere ignorata quando si ottiene la distribuzione posteriore.XXXP(X)P(X)P(X)θθ\theta …





2
Perché è necessario campionare dalla distribuzione posteriore se CONOSCIAMO già la distribuzione posteriore?
La mia comprensione è che quando si utilizza un approccio bayesiano per stimare i valori dei parametri: La distribuzione posteriore è la combinazione della distribuzione precedente e della distribuzione di probabilità. Simuliamo questo generando un campione dalla distribuzione posteriore (ad esempio, usando un algoritmo Metropolis-Hasting per generare valori e li …


1
Posteriore normale multivariata
Questa è una domanda molto semplice ma non riesco a trovare la derivazione da nessuna parte su Internet o in un libro. Vorrei vedere la derivazione di come un bayesiano aggiorna una distribuzione normale multivariata. Ad esempio: immagina P(x|μ,Σ)P(μ)==N(μ,Σ)N(μ0,Σ0).P(x|μ,Σ)=N(μ,Σ)P(μ)=N(μ0,Σ0). \begin{array}{rcl} \mathbb{P}({\bf x}|{\bf μ},{\bf Σ}) & = & N({\bf \mu}, {\bf …


2
Stima della distribuzione posteriore della covarianza di un gaussiano multivariato
Devo "imparare" la distribuzione di un gaussiano bivariato con pochi campioni, ma una buona ipotesi sulla distribuzione precedente, quindi vorrei usare l'approccio bayesiano. Ho definito il mio precedente: P(μ)∼N(μ0,Σ0)P(μ)∼N(μ0,Σ0) \mathbf{P}(\mathbf{\mu}) \sim \mathcal{N}(\mathbf{\mu_0},\mathbf{\Sigma_0}) μ0=[00] Σ0=[160027]μ0=[00] Σ0=[160027] \mathbf{\mu_0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \ \ \ \mathbf{\Sigma_0} = \begin{bmatrix} 16 & …

1
Quale metodo di confronto multiplo utilizzare per un modello lmer: lsmeans o glht?
Sto analizzando un set di dati usando un modello di effetti misti con un effetto fisso (condizione) e due effetti casuali (partecipante a causa del disegno e della coppia all'interno del soggetto). Il modello è stato generato conlme4 pacchetto: exp.model<-lmer(outcome~condition+(1|participant)+(1|pair),data=exp). Successivamente, ho eseguito un test del rapporto di verosimiglianza di …


Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.