Domande taggate «expectation-maximization»

Un algoritmo di ottimizzazione spesso utilizzato per la stima della massima probabilità in presenza di dati mancanti.








4
Come proiettare un nuovo vettore nello spazio PCA?
Dopo aver eseguito l'analisi dei componenti principali (PCA), voglio proiettare un nuovo vettore nello spazio PCA (ovvero trovare le sue coordinate nel sistema di coordinate PCA). Ho calcolato PCA in linguaggio R utilizzando prcomp. Ora dovrei essere in grado di moltiplicare il mio vettore per la matrice di rotazione PCA. …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 

5
Algoritmo di motivazione dell'aspettativa di massimizzazione
Nell'approccio dell'algoritmo EM usiamo la disuguaglianza di Jensen per arrivare a logp(x|θ)≥∫logp(z,x|θ)p(z|x,θ(k))dz−∫logp(z|x,θ)p(z|x,θ(k))dzlog⁡p(x|θ)≥∫log⁡p(z,x|θ)p(z|x,θ(k))dz−∫log⁡p(z|x,θ)p(z|x,θ(k))dz\log p(x|\theta) \geq \int \log p(z,x|\theta) p(z|x,\theta^{(k)}) dz - \int \log p(z|x,\theta) p(z|x,\theta^{(k)})dz e definire daθ(k+1)θ(k+1)\theta^{(k+1)}θ(k+1)=argmaxθ∫logp(z,x|θ)p(z|x,θ(k))dzθ(k+1)=arg⁡maxθ∫log⁡p(z,x|θ)p(z|x,θ(k))dz\theta^{(k+1)}=\arg \max_{\theta}\int \log p(z,x|\theta) p(z|x,\theta^{(k)}) dz Tutto ciò che leggo EM lo fa semplicemente cadere, ma mi sono sempre sentito a disagio non avendo …

2
Algoritmo EM implementato manualmente
Voglio implementare l'algoritmo EM manualmente e poi confrontarlo con i risultati normalmixEMdel mixtoolspacchetto. Certo, sarei felice se entrambi conducessero agli stessi risultati. Il riferimento principale è Geoffrey McLachlan (2000), Modelli di miscele finite . Ho una densità mista di due gaussiani, in forma generale, la probabilità di log è data …

2
Perché ottimizzare un mix di gaussiano direttamente dal punto di vista computazionale?
Considera la probabilità di log di una miscela di gaussiani: l(Sn;θ)=∑t=1nlogf(x(t)|θ)=∑t=1nlog{∑i=1kpif(x(t)|μ(i),σ2i)}l(Sn;θ)=∑t=1nlog⁡f(x(t)|θ)=∑t=1nlog⁡{∑i=1kpif(x(t)|μ(i),σi2)}l(S_n; \theta) = \sum^n_{t=1}\log f(x^{(t)}|\theta) = \sum^n_{t=1}\log\left\{\sum^k_{i=1}p_i f(x^{(t)}|\mu^{(i)}, \sigma^2_i)\right\} Mi chiedevo perché era difficile dal punto di vista computazionale massimizzare quell'equazione direttamente? Stavo cercando una chiara intuizione solida sul perché dovrebbe essere ovvio che è difficile o forse una spiegazione …

1
Allenare un campo casuale di Markov di base per classificare i pixel in un'immagine
Sto cercando di imparare come usare Markov Random Fields per segmentare le regioni in un'immagine. Non capisco alcuni dei parametri nell'MRF o perché la massimizzazione delle aspettative che eseguo non riesca a convergere in una soluzione a volte. A partire dal teorema di Bayes, ho p(x|y)=p(y|x)p(x)/p(y)p(x|y)=p(y|x)p(x)/p(y)p(x|y) = p(y|x) p(x) / …

1
EM, c'è una spiegazione intuitiva?
La procedura EM appare, ai non iniziati, come magia nera più o meno. Stimare i parametri di un HMM (ad esempio) utilizzando dati supervisionati. Quindi decodifica i dati senza tag, usando avanti-indietro per "contare" gli eventi come se i dati fossero taggati, più o meno. Perché questo rende il modello …

2
Perché l'ottimizzazione delle aspettative è importante per i modelli di miscele?
Ci sono molte pubblicazioni che enfatizzano il metodo di massimizzazione delle aspettative su modelli di miscele (Miscela di gaussiana, modello nascosto di Markov, ecc.). Perché EM è importante? EM è solo un modo per fare l'ottimizzazione e non è ampiamente usato come metodo basato sul gradiente (gradiente decente o metodo …


Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.