Domande taggate «penalized»

3
LASSO con termini di interazione: va bene se gli effetti principali sono ridotti a zero?
La regressione di LASSO riduce i coefficienti verso zero, fornendo così un'efficace selezione del modello. Credo che nei miei dati vi siano interazioni significative tra covariate nominali e continue. Non necessariamente, tuttavia, gli "effetti principali" del modello reale sono significativi (diversi da zero). Ovviamente non lo so poiché il vero …

2
KKT contro formulazione non vincolata della regressione del lazo
La regressione penalizzata L1 (aka lazo) è presentata in due formulazioni. Lascia che le due funzioni obiettivo siano Q1=12||Y−Xβ||22Q2=12||Y−Xβ||22+λ||β||1.Q1=12||Y−Xβ||22Q2=12||Y−Xβ||22+λ||β||1. Q_1 = \frac{1}{2}||Y - X\beta||_2^2 \\ Q_2 =\frac{1}{2}||Y - X\beta||_2^2 + \lambda ||\beta||_1. Quindi le due diverse formulazioni sono argminβQ1argminβQ1 \text{argmin}_\beta \; Q_1 soggetto a ||β||1≤t,||β||1≤t, ||\beta||_1 \leq t, e, equivalentemente …

1
Qual è l'intervallo tipico di possibili valori per il parametro di restringimento nella regressione penalizzata?
Nella regressione del lazo o della cresta, è necessario specificare un parametro di restringimento, spesso chiamato da o . Questo valore viene spesso scelto tramite validazione incrociata controllando un sacco di valori diversi sui dati di allenamento e vedendo quale produce il migliore, ad es. sui dati di test. Qual …



2
Se il restringimento viene applicato in modo intelligente, funziona sempre meglio per stimatori più efficienti?
Supponiamo di avere due stimatori e che sono stimatori coerenti dello stesso parametro e tali che con in senso psd. Pertanto, asintoticamente è più efficiente di . Questi due stimatori si basano su diverse funzioni di perdita. β 2β0√βˆ1β^1\widehat{\beta}_1βˆ2β^2\widehat{\beta}_2β0β0\beta_0n−−√(βˆ1−β0)→dN(0,V1),n−−√(βˆ2−β0)→dN(0,V2)n(β^1−β0)→dN(0,V1),n(β^2−β0)→dN(0,V2)\sqrt{n}(\widehat{\beta}_1 -\beta_0) \stackrel{d}\rightarrow \mathcal{N}(0, V_1), \quad \sqrt{n}(\widehat{\beta}_2 -\beta_0) \stackrel{d}\rightarrow \mathcal{N}(0, V_2) β …


1
Quale modello di apprendimento profondo può classificare categorie che non si escludono a vicenda
Esempi: ho una frase nella descrizione del lavoro: "Ingegnere senior Java nel Regno Unito". Voglio usare un modello di apprendimento profondo per prevederlo in 2 categorie: English e IT jobs. Se uso il modello di classificazione tradizionale, posso solo prevedere 1 etichetta con la softmaxfunzione all'ultimo livello. Quindi, posso usare …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.