Domande taggate «cart»

"Alberi di classificazione e regressione". CART è una popolare tecnica di apprendimento automatico e costituisce la base per tecniche come foreste casuali e implementazioni comuni di macchine per il potenziamento del gradiente.





2
Algoritmi di machine learning per dati panel
In questa domanda: esiste un metodo per costruire alberi decisionali che tenga conto dei predittori strutturati / gerarchici / multilivello? - menzionano un metodo di dati del pannello per gli alberi. Esistono metodi dati pannello specifici per il supporto di macchine vettoriali e reti neurali? In tal caso, potresti citare …





2
Campionamento MCMC dello spazio dell'albero decisionale rispetto alla foresta casuale
Una foresta casuale è una raccolta di alberi decisionali formata selezionando casualmente solo alcune funzionalità con cui costruire ciascun albero (e talvolta inserendo i dati di addestramento). Apparentemente imparano e generalizzano bene. Qualcuno ha fatto il campionamento MCMC dello spazio dell'albero decisionale o li ha confrontati con foreste casuali? So …



2
Perché un albero insaccato / albero forestale casuale ha una propensione maggiore di un singolo albero decisionale?
Se consideriamo un albero decisionale completamente sviluppato (ovvero un albero decisionale non potato) ha una varianza elevata e una propensione bassa. Le foreste insaccanti e casuali utilizzano questi modelli ad alta varianza e li aggregano al fine di ridurre la varianza e quindi migliorare l'accuratezza delle previsioni. Entrambe le foreste …

1
R / mgcv: Perché i prodotti tensor te () e ti () producono superfici diverse?
Il mgcvpacchetto per Rha due funzioni per adattare le interazioni del prodotto tensore: te()e ti(). Comprendo la divisione di base del lavoro tra i due (adattamento di un'interazione non lineare rispetto alla scomposizione di questa interazione in effetti principali e un'interazione). Quello che non capisco è perché te(x1, x2)e ti(x1) …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 


Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.