Domande taggate «variance»

La deviazione quadrata prevista di una variabile casuale dalla sua media; oppure, la deviazione quadrata media dei dati sulla loro media.

1
Come trovare la varianza tra punti multidimensionali?
Supponiamo che io abbia una matrice X che è n per p, cioè che ha n osservazioni, con ogni osservazione nello spazio p-dimensionale. Come posso trovare la varianza di queste n osservazioni? Nel caso in cui p = 1, ho solo bisogno di usare la formula di varianza regolare. Che …
12 variance 

2
Perché i modelli di "errore in X" non sono più utilizzati?
Quando si calcola l'errore standard di un coefficiente di regressione, che non tengono conto per la casualità nella matrice di progettazione . In OLS ad esempio, calcoliamo comeXXXvar ( β^)var(β^)\text{var}(\hat{\beta})var ( ( XTX)- 1XTY) = σ2( XTX)- 1var((XTX)-1XTY)=σ2(XTX)-1\text{var}((X^TX)^{-1}X^TY) = \sigma^2(X^TX)^{-1} Se l' sono stati considerati casuale, la legge della varianza …


4
Perché le misure di dispersione sono meno intuitive della centralità?
Sembra esserci qualcosa nella nostra comprensione umana che crea difficoltà a cogliere intuitivamente l'idea della varianza. In senso stretto la risposta è immediata: la quadratura ci allontana dalla nostra comprensione riflessiva. Ma è solo la varianza che presenta problemi o è l'idea di diffusione nei dati? Cerchiamo rifugio nella gamma, …


1
La media e la varianza esistono sempre per le distribuzioni esponenziali della famiglia?
Supponiamo che una variabile casuale scalare appartenga a una famiglia esponenziale di parametri vettoriali con pdfXXX fX(x|θ)=h(x)exp(∑i=1sηi(θ)Ti(x)−A(θ))fX(x|θ)=h(x)exp⁡(∑i=1sηi(θ)Ti(x)−A(θ)) f_X(x|\boldsymbol \theta) = h(x) \exp\left(\sum_{i=1}^s \eta_i({\boldsymbol \theta}) T_i(x) - A({\boldsymbol \theta}) \right) dove è il vettore dei parametri e è la statistica sufficiente congiunta.θ=(θ1,θ2,⋯,θs)Tθ=(θ1,θ2,⋯,θs)T{\boldsymbol \theta} = \left(\theta_1, \theta_2, \cdots, \theta_s \right )^TT(x)=(T1(x),T2(x),⋯,Ts(x))TT(x)=(T1(x),T2(x),⋯,Ts(x))T\mathbf{T}(x)= \left(T_1(x), …


2
Riferimento per ?
Nella sua risposta alla mia domanda precedente, @Erik P. dà l'espressione dove è l' eccesso di curtosi della distribuzione. Viene fornito un riferimento alla voce di Wikipedia sulla distribuzione della varianza di esempio , ma la pagina di Wikipedia dice "citazione necessaria".κV a r [ s2] = σ4( 2n - …



1
Media e varianza di una distribuzione di Poisson gonfiata a zero
Qualcuno può mostrare come il valore atteso e la varianza del Poisson gonfiato zero, con funzione di massa di probabilità f(y)={π+(1−π)e−λ,(1−π)λye−λy!,if y=0if y=1,2....f(y)={π+(1−π)e−λ,if y=0(1−π)λye−λy!,if y=1,2.... f(y) = \begin{cases} \pi+(1-\pi)e^{-\lambda}, & \text{if }y=0 \\ (1-\pi)\frac{\lambda^{y}e^{-\lambda}}{y!}, & \text{if }y=1,2.... \end{cases} dove è la probabilità che l'osservazione sia zero da un processo binomiale …

3
Sono corrette queste formule per trasformare P, LSD, MSD, HSD, CI, in SE come stima esatta o gonfiata / conservativa di ?
sfondo Sto conducendo una meta-analisi che include dati precedentemente pubblicati. Spesso, le differenze tra i trattamenti sono riportate con valori di P, differenze meno significative (LSD) e altre statistiche ma non forniscono una stima diretta della varianza. Nel contesto del modello che sto usando, una sopravvalutazione della varianza va bene. …

2
Perché un albero insaccato / albero forestale casuale ha una propensione maggiore di un singolo albero decisionale?
Se consideriamo un albero decisionale completamente sviluppato (ovvero un albero decisionale non potato) ha una varianza elevata e una propensione bassa. Le foreste insaccanti e casuali utilizzano questi modelli ad alta varianza e li aggregano al fine di ridurre la varianza e quindi migliorare l'accuratezza delle previsioni. Entrambe le foreste …

3
Media della distribuzione esponenziale inversa
Data una variabile casuale , qual è la media e la varianza di ?Y=Exp(λ)Y=Exp(λ)Y = Exp(\lambda)G=1YG=1YG=\dfrac{1}{Y} Guardo Inverse Gamma Distribution, ma la media e la varianza sono definite solo per e rispettivamente ...α>1α>1\alpha>1α>2α>2\alpha>2

2
Correlazione tra seno e coseno
Supponiamo che XXX sia uniformemente distribuito su [0,2π][0,2π][0, 2\pi] . Lasciate Y=sinXY=sin⁡XY = \sin X e Z=cosXZ=cos⁡XZ = \cos X . Mostra che la correlazione tra YYY e ZZZ è zero. Sembra che dovrei conoscere la deviazione standard del seno e del coseno e la loro covarianza. Come posso calcolarli? …

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.