Inclusione di ulteriori vincoli (in genere una penalità per la complessità) nel processo di adattamento del modello. Utilizzato per prevenire un eccesso di adattamento / migliorare la precisione predittiva.
Come eseguire la regressione della cresta non negativa? Il lazo non negativo è disponibile in scikit-learn, ma per la cresta, non posso applicare la non negatività dei beta e, in effetti, sto ottenendo coefficienti negativi. qualcuno sà perche è cosi? Inoltre, posso implementare la cresta in termini di minimi quadrati …
Capisco che possiamo impiegare la regolarizzazione in un problema di regressione dei minimi quadrati come w∗=argminw[(y−Xw)T(y−Xw)+λ∥w∥2]w∗=argminw[(y−Xw)T(y−Xw)+λ‖w‖2]\boldsymbol{w}^* = \operatorname*{argmin}_w \left[ (\mathbf y-\mathbf{Xw})^T(\boldsymbol{y}-\mathbf{Xw}) + \lambda\|\boldsymbol{w}\|^2 \right] e che questo problema ha una soluzione a forma chiusa come: w^=(XTX+λI)−1XTy.w^=(XTX+λI)−1XTy.\hat{\boldsymbol{w}} = (\boldsymbol{X}^T\boldsymbol{X}+\lambda\boldsymbol{I})^{-1}\boldsymbol{X}^T\boldsymbol{y}. Vediamo che nella seconda equazione, la regolarizzazione sta semplicemente aggiungendo λλ\lambda alla …
Attualmente sto imparando la regressione della cresta ed ero un po 'confuso riguardo alla penalizzazione di modelli più complessi (o alla definizione di un modello più complesso). Da quanto ho capito, la complessità del modello non è necessariamente correlata all'ordine polinomiale. Quindi: 2 + 3 + 4 x2+ 5 x3+ …
Sto studiando la differenza tra regolarizzazione nella regressione RKHS e regressione lineare, ma faccio fatica a capire la differenza cruciale tra i due. ( xio, yio)(xi,yi)(x_i,y_i)f( ⋅ )f(⋅)f(\cdot)f( x ) ≈ u ( x ) = ∑i = 1mαioK( x , xio) ,f(x)≈u(x)=∑i=1mαiK(x,xi),\begin{equation}f(x)\approx u(x)=\sum_{i=1}^m \alpha_i K(x,x_i),\end{equation}K( ⋅ , ⋅ )K(⋅,⋅)K(\cdot,\cdot)αmαm\alpha_mminα …
Quando , il problema dei minimi quadrati che impone una restrizione sferica sul valore di può essere scritto come per un sistema indefinito. \ | \ cdot \ | _2 è la norma euclidea di un vettore.y=Xβ+ey=Xβ+ey = X\beta + eδδ\deltaββ\betamin ∥y−Xβ∥22s.t. ∥β∥22≤δ2min ‖y−Xβ‖22s.t. ‖β‖22≤δ2\begin{equation} \begin{array} &\operatorname{min}\ \| y - …
Supponiamo di avere un campione di frequenze di 4 possibili eventi: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 e ho le probabilità attese dei miei eventi: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 Con la somma delle frequenze osservate dei …
Quindi, ho 16 prove in cui sto cercando di autenticare una persona da un tratto biometrico usando Hamming Distance. La mia soglia è impostata su 3,5. I miei dati sono di seguito e solo la versione di prova 1 è un vero positivo: Trial Hamming Distance 1 0.34 2 0.37 …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.