Domande taggate «separation»

La separazione si verifica quando alcune classi di un risultato categoriale possono essere perfettamente distinte da una combinazione lineare di altre variabili.


1
La regressione logistica in R ha provocato una separazione perfetta (fenomeno di Hauck-Donner). E adesso?
Sto cercando di prevedere un risultato binario usando 50 variabili esplicative continue (l'intervallo della maggior parte delle variabili va da a ∞ ). Il mio set di dati ha quasi 24.000 righe. Quando corro in R, ottengo:−∞−∞-\infty∞∞\inftyglm Warning messages: 1: glm.fit: algorithm did not converge 2: glm.fit: fitted probabilities numerically …

2
Il modello di regressione logistica non converge
Ho alcuni dati sui voli delle compagnie aeree (in un frame di dati chiamato flights) e vorrei vedere se il tempo di volo ha qualche effetto sulla probabilità di un arrivo significativamente ritardato (ovvero 10 o più minuti). Ho pensato che avrei usato la regressione logistica, con il tempo di …
40 r  logistic  separation 


1
Qual è la probabilità che punti casuali in dimensioni siano linearmente separabili?
Dati punti dati, ognuno con caratteristiche, sono etichettati come , l'altro sono etichettati come . Ogni caratteristica prende un valore da modo casuale (distribuzione uniforme). Qual è la probabilità che esista un iperpiano che può dividere le due classi?nnndddn / 2n/2n/2000n / 2n/2n/2111[ 0 , 1 ][0,1][0,1] Consideriamo prima il …


1
Esiste una spiegazione intuitiva del perché la regressione logistica non funzionerà per un caso di separazione perfetta? E perché l'aggiunta di regolarizzazione lo risolverà?
Abbiamo molte buone discussioni sulla separazione perfetta nella regressione logistica. Come ad esempio, la regressione logistica in R ha provocato una separazione perfetta (fenomeno di Hauck-Donner). E adesso? e il modello di regressione logistica non converge . Personalmente ritengo ancora che non sia intuitivo il motivo per cui sarà un …


1
Pacchetto GBM vs. Caret tramite GBM
Ho usato il tuning del modello caret, ma poi rieseguendo il modello usando il gbmpacchetto. Comprendo che il caretpacchetto utilizza gbme l'output dovrebbe essere lo stesso. Tuttavia, solo un rapido test eseguito utilizzando data(iris)mostra una discrepanza nel modello di circa il 5% utilizzando RMSE e R ^ 2 come metrica …



1
R / mgcv: Perché i prodotti tensor te () e ti () producono superfici diverse?
Il mgcvpacchetto per Rha due funzioni per adattare le interazioni del prodotto tensore: te()e ti(). Comprendo la divisione di base del lavoro tra i due (adattamento di un'interazione non lineare rispetto alla scomposizione di questa interazione in effetti principali e un'interazione). Quello che non capisco è perché te(x1, x2)e ti(x1) …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 

1
Enormi coefficienti nella regressione logistica: cosa significa e cosa fare?
Ottengo coefficienti enormi durante la regressione logistica, vedi coefficienti con krajULKV: > summary(m5) Call: glm(formula = cbind(ml, ad) ~ rok + obdobi + kraj + resid_usili2 + rok:obdobi + rok:kraj + obdobi:kraj + kraj:resid_usili2 + rok:obdobi:kraj, family = "quasibinomial") Deviance Residuals: Min 1Q Median 3Q Max -2.7796 -1.0958 -0.3101 1.0034 …
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.