Domande taggate «unbiased-estimator»

Si riferisce a uno stimatore di un parametro di popolazione che "raggiunge il valore reale" in media. Cioè, una funzione dei dati osservatiθ^è uno stimatore imparziale di un parametro se . L'esempio più semplice di uno stimatore imparziale è la media del campione come stimatore della media della popolazione. θE(θ^)=θ

1
Stimatore non distorto con varianza minima per
Consenti a essere un campione casuale di una distribuzione per . Vale a dire,X1,...,XnX1,...,Xn X_1, ...,X_nGeometric(θ)Geometric(θ)Geometric(\theta)0&lt;θ&lt;10&lt;θ&lt;10<\theta<1 pθ(x)=θ(1−θ)x−1I{1,2,...}(x)pθ(x)=θ(1−θ)x−1I{1,2,...}(x)p_{\theta}(x)=\theta(1-\theta)^{x-1} I_{\{1,2,...\}}(x) Trova lo stimatore imparziale con varianza minima perg(θ)=1θg(θ)=1θg(\theta)=\frac{1}{\theta} Il mio tentativo: Poiché la distribuzione geometrica proviene dalla famiglia esponenziale, la statistica è completa e sufficiente per . Inoltre, se è uno stimatore …


2
Miglioramento dello stimatore minimo
Supponiamo che io abbia parametri positivi per stimare e le corrispondenti stime stimate prodotte dagli stimatori , ovvero , e così via.nnnμ1,μ2,...,μnμ1,μ2,...,μn\mu_1,\mu_2,...,\mu_nnnnμ1^,μ2^,...,μn^μ1^,μ2^,...,μn^\hat{\mu_1},\hat{\mu_2},...,\hat{\mu_n}E[μ1^]=μ1E[μ1^]=μ1\mathrm E[\hat{\mu_1}]=\mu_1E[μ2^]=μ2E[μ2^]=μ2\mathrm E[\hat{\mu_2}]=\mu_2 Vorrei stimare min(μ1,μ2,...,μn)min(μ1,μ2,...,μn)\mathrm{min}(\mu_1,\mu_2,...,\mu_n) usando le stime a portata di mano. Chiaramente lo stimatore ingenuo min(μ1^,μ2^,...,μn^)min(μ1^,μ2^,...,μn^)\mathrm{min}(\hat{\mu_1},\hat{\mu_2},...,\hat{\mu_n}) è di parte inferiore come E[min(μ1^,μ2^,...,μn^)]≤min(μ1,μ2,...,μn)E[min(μ1^,μ2^,...,μn^)]≤min(μ1,μ2,...,μn)\mathrm E[\mathrm{min}(\hat{\mu_1},\hat{\mu_2},...,\hat{\mu_n})]\leq \mathrm{min}(\mu_1,\mu_2,...,\mu_n) Supponiamo di avere …

1
Quale modello di apprendimento profondo può classificare categorie che non si escludono a vicenda
Esempi: ho una frase nella descrizione del lavoro: "Ingegnere senior Java nel Regno Unito". Voglio usare un modello di apprendimento profondo per prevederlo in 2 categorie: English e IT jobs. Se uso il modello di classificazione tradizionale, posso solo prevedere 1 etichetta con la softmaxfunzione all'ultimo livello. Quindi, posso usare …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

1
Stimatori efficienti imparziali sono stocasticamente dominanti su altri stimatori (mediani) imparziali?
Descrizione generale Uno stimatore efficiente (che ha una varianza del campione uguale al limite di Cramér-Rao) massimizza la probabilità di essere vicino al vero parametro ?θθ\theta Supponiamo di confrontare la differenza o la differenza assoluta tra la stima e il vero parametroΔ^=θ^−θΔ^=θ^−θ\hat\Delta = \hat \theta - \theta La distribuzione di …

2
perché l'imparzialità non implica coerenza
Sto leggendo il deep learning di Ian Goodfellow et al. Introduce la distorsione come dove e sono rispettivamente il parametro stimato e il parametro reale sottostante.Bias(θ)=E(θ^)−θBias(θ)=E(θ^)−θBias(\theta)=E(\hat\theta)-\thetaθ^θ^\hat\thetaθθ\theta La coerenza, d'altra parte, è definita da che significa che per qualsiasi , comel i mm → ∞θ^m= θlimm→∞θ^m=θ\mathrm{lim}_{m\to\infty}\hat\theta_m=\thetaϵ &gt; 0ϵ&gt;0\epsilon > 0P( |θ^m- …
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.