Domande taggate «non-independent»

Dati, eventi, processi, ecc. Non sono indipendenti se la conoscenza di 1 fornisce alcune informazioni sullo stato o sul valore dell'altro.

1
Quale modello di apprendimento profondo può classificare categorie che non si escludono a vicenda
Esempi: ho una frase nella descrizione del lavoro: "Ingegnere senior Java nel Regno Unito". Voglio usare un modello di apprendimento profondo per prevederlo in 2 categorie: English e IT jobs. Se uso il modello di classificazione tradizionale, posso solo prevedere 1 etichetta con la softmaxfunzione all'ultimo livello. Quindi, posso usare …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 


2
Come modellare la somma delle variabili casuali di Bernoulli per i dati dipendenti?
Ho quasi le stesse domande come questa: come posso modellare in modo efficiente la somma delle variabili casuali di Bernoulli? Ma l'impostazione è abbastanza diversa: S=∑i=1,NXiS=∑i=1,NXiS=\sum_{i=1,N}{X_i} , , ~ 20, ~ 0.1P(Xi=1)=piP(Xi=1)=piP(X_{i}=1)=p_iNNNpipip_i Abbiamo i dati per i risultati delle variabili casuali di Bernoulli: ,Xi,jXi,jX_{i,j}Sj=∑i=1,NXi,jSj=∑i=1,NXi,jS_j=\sum_{i=1,N}{X_{i,j}} Se stimiamo la con la stima …

2
Calcola la curva ROC per i dati
Quindi, ho 16 prove in cui sto cercando di autenticare una persona da un tratto biometrico usando Hamming Distance. La mia soglia è impostata su 3,5. I miei dati sono di seguito e solo la versione di prova 1 è un vero positivo: Trial Hamming Distance 1 0.34 2 0.37 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.