Domande taggate «bootstrap»

Il bootstrap è un metodo di ricampionamento per stimare la distribuzione campionaria di una statistica.


5
Puoi esagerare con l'addestramento degli algoritmi di machine learning usando CV / Bootstrap?
Questa domanda potrebbe essere troppo aperta per ottenere una risposta definitiva, ma speriamo di no. Gli algoritmi di apprendimento automatico, come SVM, GBM, Random Forest ecc., Generalmente hanno alcuni parametri gratuiti che, al di là di una guida empirica, devono essere adattati a ciascun set di dati. Questo viene generalmente …





4
Quando è valida la stima bootstrap del bias?
Si afferma spesso che il bootstrap può fornire una stima della distorsione in uno stimatore. Se t è la stima per qualche statistica, e ~ t i sono le repliche bootstrap (con i ∈ { 1 , ⋯ , N } ), allora la stima bootstrap di polarizzazione è che …
31 bootstrap  bias 

2
Esiste un intervallo di confidenza non parametrico affidabile per la media di una distribuzione distorta?
Le distribuzioni molto distorte come il log-normal non determinano intervalli di confidenza bootstrap accurati. Ecco un esempio che mostra che le aree di coda sinistra e destra sono lontane dall'ideale 0,025, indipendentemente dal metodo bootstrap che si prova in R: require(boot) n <- 25 B <- 1000 nsim <- 1000 …





1
Intervallo di previsione Bootstrap
È disponibile una tecnica bootstrap per calcolare gli intervalli di previsione per le previsioni dei punti ottenute ad esempio dalla regressione lineare o altro metodo di regressione (k-vicino più vicino, alberi di regressione ecc.)? In qualche modo ritengo che il modo a volte proposto di avviare semplicemente la previsione del …


1
I gradi di libertà possono essere un numero non intero?
Quando uso GAM, mi dà DF residuo è (ultima riga nel codice). Cosa significa? Andando oltre l'esempio GAM, in generale, il numero di gradi di libertà può essere un numero non intero?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.