Domande taggate «bootstrap»

Il bootstrap è un metodo di ricampionamento per stimare la distribuzione campionaria di una statistica.



1
Il ricampionamento bootstrap può essere utilizzato per calcolare un intervallo di confidenza per la varianza di un set di dati?
So che se ricampiona più volte da un set di dati e calcoli la media ogni volta, questi mezzi seguiranno una distribuzione normale (da parte del CLT). Pertanto, è possibile calcolare un intervallo di confidenza sulla media del set di dati senza fare ipotesi sulla distribuzione di probabilità del set …

2
Varianza della media campionaria del campione bootstrap
Sia osservazioni distinte (nessun legame). Lascia che denoti un campione bootstrap (un campione dal CDF empirico) e che . Trova e .X1,...,XnX1,...,XnX_{1},...,X_{n}X∗1,...,X∗nX1∗,...,Xn∗X_{1}^{*},...,X_{n}^{*}X¯∗n=1n∑ni=1X∗iX¯n∗=1n∑i=1nXi∗\bar{X}_{n}^{*}=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{*}E(X¯∗n)E(X¯n∗)E(\bar{X}_{n}^{*})Var(X¯∗n)Var(X¯n∗)\mathrm{Var}(\bar{X}_{n}^{*}) Quello che ho finora è che è ciascuno con probabilità quindi ed che dà X∗iXi∗X_{i}^{*}X1,...,XnX1,...,XnX_{1},...,X_{n}1n1n\frac{1}{n}E(X∗i)=1nE(X1)+...+1nE(Xn)=nμn=μE(Xi∗)=1nE(X1)+...+1nE(Xn)=nμn=μ E(X_{i}^{*})=\frac{1}{n}E(X_{1})+...+\frac{1}{n}E(X_{n})=\frac{n\mu}{n}=\mu E(X∗2i)=1nE(X21)+...+1nE(X2n)=n(μ2+σ2)n=μ2+σ2,E(Xi∗2)=1nE(X12)+...+1nE(Xn2)=n(μ2+σ2)n=μ2+σ2,E(X_{i}^{*2})=\frac{1}{n}E(X_{1}^{2})+...+\frac{1}{n}E(X_{n}^{2})=\frac{n(\mu^{2}+\sigma^{2})}{n}=\mu^{2}+\sigma^{2}\>, Var(X∗i)=E(X∗2i)−(E(X∗i))2=μ2+σ2−μ2=σ2.Var(Xi∗)=E(Xi∗2)−(E(Xi∗))2=μ2+σ2−μ2=σ2. \mathrm{Var}(X_{i}^{*})=E(X_{i}^{*2})-(E(X_{i}^{*}))^{2}=\mu^{2}+\sigma^{2}-\mu^{2}=\sigma^{2} \>. Quindi, e poiché ' sono indipendenti. Questo dàE(X¯∗n)=E(1n∑i=1nX∗i)=1n∑i=1nE(X∗i)=nμn=μE(X¯n∗)=E(1n∑i=1nXi∗)=1n∑i=1nE(Xi∗)=nμn=μE(\bar{X}_{n}^{*})=E(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{*})=\frac{1}{n}\sum_{i=1}^{n}E(X_{i}^{*})=\frac{n\mu}{n}=\mu …



2



4
Come eseguire più test chi-quadrato post-hoc su un tavolo 2 X 3?
Il mio set di dati comprende la mortalità totale o la sopravvivenza di un organismo in tre tipi di siti: costiera, midchannel e offshore. I numeri nella tabella seguente rappresentano il numero di siti. 100% Mortality 100% Survival Inshore 30 31 Midchannel 10 20 Offshore 1 10 Vorrei sapere se …

1
Esiste un nome per questo tipo di bootstrap?
Prendi in considerazione un esperimento con più partecipanti umani, ciascuno misurato più volte in due condizioni. Un modello di effetti misti può essere formulato (usando la sintassi lme4 ) come: fit = lmer( formula = measure ~ (1|participant) + condition ) Ora, supponiamo di voler generare intervalli di confidenza bootstrap …





Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.