Domande taggate «degrees-of-freedom»

Il termine "gradi di libertà" è usato per descrivere il numero di valori nel calcolo finale di una statistica che è libera di variare. Utilizzare anche per "gradi di libertà efficaci".

11
Come capire i gradi di libertà?
Da Wikipedia , ci sono tre interpretazioni dei gradi di libertà di una statistica: In statistica, il numero di gradi di libertà è il numero di valori nel calcolo finale di una statistica che sono liberi di variare . Le stime dei parametri statistici possono essere basate su diverse quantità …

2
Gradi di libertà di nel test di Hosmer-Lemeshow
La statistica del test per il test di Hosmer-Lemeshow (HLT) per la bontà di adattamento (GOF) di un modello di regressione logistica è definita come segue: Il campione viene quindi suddiviso in decili, , per decile si calcolano le seguenti quantità:d=10d=10d=10D1,D2,…,DdD1,D2,…,DdD_1, D_2, \dots , D_{d} O1d=∑i∈DdyiO1d=∑i∈DdyiO_{1d}=\displaystyle \sum_{i \in D_d} y_i …

1
I gradi di libertà possono essere un numero non intero?
Quando uso GAM, mi dà DF residuo è (ultima riga nel codice). Cosa significa? Andando oltre l'esempio GAM, in generale, il numero di gradi di libertà può essere un numero non intero?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 



4
Come proiettare un nuovo vettore nello spazio PCA?
Dopo aver eseguito l'analisi dei componenti principali (PCA), voglio proiettare un nuovo vettore nello spazio PCA (ovvero trovare le sue coordinate nel sistema di coordinate PCA). Ho calcolato PCA in linguaggio R utilizzando prcomp. Ora dovrei essere in grado di moltiplicare il mio vettore per la matrice di rotazione PCA. …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 










Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.