Domande taggate «t-distribution»

t è la distribuzione della statistica t che risulta da un test t. Utilizza questo tag solo per domande sulla distribuzione; usa [t-test] per domande sul test.

3
Interpretazione del predittore e / o della risposta trasformati in tronchi
Mi chiedo se fa differenza nell'interpretazione se solo le variabili dipendenti, dipendenti e indipendenti, o solo le variabili indipendenti, vengono trasformate in log. Considera il caso di log(DV) = Intercept + B1*IV + Error Posso interpretare il IV come l'aumento percentuale, ma come cambia quando lo faccio log(DV) = Intercept …
46 regression  data-transformation  interpretation  regression-coefficients  logarithm  r  dataset  stata  hypothesis-testing  contingency-tables  hypothesis-testing  statistical-significance  standard-deviation  unbiased-estimator  t-distribution  r  functional-data-analysis  maximum-likelihood  bootstrap  regression  change-point  regression  sas  hypothesis-testing  bayesian  randomness  predictive-models  nonparametric  terminology  parametric  correlation  effect-size  loess  mean  pdf  quantile-function  bioinformatics  regression  terminology  r-squared  pdf  maximum  multivariate-analysis  references  data-visualization  r  pca  r  mixed-model  lme4-nlme  distributions  probability  bayesian  prior  anova  chi-squared  binomial  generalized-linear-model  anova  repeated-measures  t-test  post-hoc  clustering  variance  probability  hypothesis-testing  references  binomial  profile-likelihood  self-study  excel  data-transformation  skewness  distributions  statistical-significance  econometrics  spatial  r  regression  anova  spss  linear-model 

1
Prova che i coefficienti in un modello OLS seguono una distribuzione t con gradi di libertà (nk)
sfondo Supponiamo di avere un modello dei minimi quadrati ordinari in cui abbiamo coefficienti nel nostro modello di regressione, kkky=Xβ+ϵy=Xβ+ϵ\mathbf{y}=\mathbf{X}\mathbf{\beta} + \mathbf{\epsilon} dove è un vettore di coefficienti , è la matrice di progettazione definita daββ\mathbf{\beta}(k×1)(k×1)(k\times1)XX\mathbf{X} X=⎛⎝⎜⎜⎜⎜⎜⎜11⋮1x11x21xn1x12…⋱………x1(k−1)⋮⋮xn(k−1)⎞⎠⎟⎟⎟⎟⎟⎟X=(1x11x12…x1(k−1)1x21…⋮⋮⋱⋮1xn1……xn(k−1))\mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1\;(k-1)} \\ 1 …





5
Perché non facciamo uso della distribuzione t per costruire un intervallo di confidenza per una proporzione?
Per calcolare l'intervallo di confidenza (CI) per la media con deviazione standard della popolazione sconosciuta (sd) stimiamo la deviazione standard della popolazione impiegando la distribuzione t. In particolare, CI=X¯±Z95%σX¯CI=X¯±Z95%σX¯CI=\bar{X} \pm Z_{95\% }\sigma_{\bar X} dove σX¯=σn√σX¯=σn\sigma_{\bar X} = \frac{\sigma}{\sqrt n} . Ma poiché non abbiamo una stima puntuale della deviazione standard …

1
simulazione di campioni casuali con un dato MLE
Questa domanda con convalida incrociata che chiedeva di simulare un campione subordinato a una somma fissa mi ha ricordato un problema che mi è stato posto da George Casella . f(x|θ)f(x|θ)f(x|\theta)(X1,…,Xn)(X1,…,Xn)(X_1,\ldots,X_n)θθ\thetaθ^(x1,…,xn)=argmin∑i=1nlogf(xi|θ)θ^(x1,…,xn)=arg⁡min∑i=1nlog⁡f(xi|θ)\hat{\theta}(x_1,\ldots,x_n)=\arg\min \sum_{i=1}^n \log f(x_i|\theta)θθ\theta θ (X1,...,Xn)(X1,…,Xn)(X1,…,Xn)(X_1,\ldots,X_n)θ^(X1,…,Xn)θ^(X1,…,Xn)\hat{\theta}(X_1,\ldots,X_n) Ad esempio, prendi una distribuzione , con parametro di posizione , la cui densità …



3
Confusione su quando usare
Mi riferivo a questa lezione video per calcolare l'intervallo di confidenza . Tuttavia, ho un po 'di confusione. Questo ragazzo sta usando -statistics per il calcolo. Tuttavia, penso che avrebbe dovuto essere una statistica t . Non ci viene data la vera deviazione standard della popolazione. Stiamo usando la deviazione …



2
Intuizione dietro la funzione di densità delle distribuzioni t
Sto studiando la distribuzione t di Student e ho iniziato a chiedermi come si deriverebbe la funzione di densità delle distribuzioni t (da wikipedia, http://en.wikipedia.org/wiki/Student%27s_t-distribution ): f( t ) = Γ ( v + 12)v π--√Γ ( v2)( 1 + t2v)- v + 12f(t)=Γ(v+12)vπΓ(v2)(1+t2v)−v+12f(t) = \frac{\Gamma(\frac{v+1}{2})}{\sqrt{v\pi}\:\Gamma(\frac{v}{2})}\left(1+\frac{t^2}{v} \right)^{-\frac{v+1}{2}} dove è il …

1
Differenze tra PROC Mixed e lme / lmer in R - gradi di libertà
Nota: questa domanda è una risposta, poiché la mia domanda precedente doveva essere cancellata per motivi legali. Confrontando PROC MIXED da SAS con la funzione lmedel nlmepacchetto in R, mi sono imbattuto in alcune differenze piuttosto confuse. Più specificamente, i gradi di libertà nei diversi test differiscono tra PROC MIXEDe …
12 r  mixed-model  sas  degrees-of-freedom  pdf  unbiased-estimator  distance-functions  functional-data-analysis  hellinger  time-series  outliers  c++  relative-risk  absolute-risk  rare-events  regression  t-test  multiple-regression  survival  teaching  multiple-regression  regression  self-study  t-distribution  machine-learning  recommender-system  self-study  binomial  standard-deviation  data-visualization  r  predictive-models  pearson-r  spearman-rho  r  regression  modeling  r  categorical-data  data-visualization  ggplot2  many-categories  machine-learning  cross-validation  weka  microarray  variance  sampling  monte-carlo  regression  cross-validation  model-selection  feature-selection  elastic-net  distance-functions  information-theory  r  regression  mixed-model  random-effects-model  fixed-effects-model  dataset  data-mining 

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.