Domande taggate «self-study»

Un esercizio di routine da un libro di testo, un corso o un test utilizzato per una lezione o uno studio autonomo. La politica di questa comunità è di "fornire suggerimenti utili" per tali domande piuttosto che risposte complete.

1
Costruzione della distribuzione di Dirichlet con distribuzione Gamma
Sia X1,…,Xk+1X1,…,Xk+1X_1,\dots,X_{k+1} variabili variabili casuali indipendenti, ognuna con una distribuzione gamma con parametri αi,i=1,2,…,k+1αi,i=1,2,…,k+1\alpha_i,i=1,2,\dots,k+1 mostrano che , hanno una distribuzione congiunta comeYi=XiX1+⋯+Xk+1,i=1,…,kYi=XiX1+⋯+Xk+1,i=1,…,kY_i=\frac{X_i}{X_1+\cdots+X_{k+1}},i=1,\dots,kDirichlet(α1,α2,…,αk;αk+1)Dirichlet(α1,α2,…,αk;αk+1)\text{Dirichlet}(\alpha_1,\alpha_2,\dots,\alpha_k;\alpha_{k+1}) PDF congiunto di Quindi trovare pdf di Non riesco a trovare jacobian, cioè(X1,…,Xk+1)=e−∑k+1i=1xixα1−11…xαk+1−1k+1Γ(α1)Γ(α2)…Γ(αk+1)(X1,…,Xk+1)=e−∑i=1k+1xix1α1−1…xk+1αk+1−1Γ(α1)Γ(α2)…Γ(αk+1)(X_1,\dots,X_{k+1})=\frac{e^{-\sum_{i=1}^{k+1}x_i}x_1^{\alpha_1-1}\dots x_{k+1}^{\alpha_{k+1}-1}}{\Gamma(\alpha_1)\Gamma(\alpha_2)\dots \Gamma(\alpha_{k+1})}(Y1,…,Yk+1)(Y1,…,Yk+1)(Y_1,\dots,Y_{k+1})J(x1,…,xk+1y1,…,yk+1)J(x1,…,xk+1y1,…,yk+1)J(\frac{x_1,\dots,x_{k+1}}{y_1,\dots,y_{k+1}})



1
Una prova per la stazionarietà di un AR (2)
Considera un processo AR (2) centrato sulla media Xt=ϕ1Xt−1+ϕ2Xt−2+ϵtXt=ϕ1Xt−1+ϕ2Xt−2+ϵtX_t=\phi_1X_{t-1}+\phi_2X_{t-2}+\epsilon_t dove ϵtϵt\epsilon_t è il processo di rumore bianco standard. Per semplicità, fammi chiamare ϕ1=bϕ1=b\phi_1=b e ϕ2=aϕ2=a\phi_{2}=a . Concentrandomi sulle radici dell'equazione delle caratteristiche ho ottenuto z1,2=−b±b2+4a−−−−−−√2az1,2=−b±b2+4a2az_{1,2}=\frac{-b\pm\sqrt{b^2+4a}}{2a} Le condizioni classiche nei libri di testo sono le seguenti:{|a|&lt;1a±b&lt;1{|a|&lt;1a±b&lt;1\begin{cases}|a|<1 \\ a\pm b<1 \end{cases} Ho …

2
Come posso calcolare la varianza dello stimatore OLS
So che β0^=y¯−β1^x¯β0^=y¯−β1^x¯\hat{\beta_0}=\bar{y}-\hat{\beta_1}\bar{x} e questo è quanto sono arrivato lontano quando ho calcolato la varianza: Var(β0^)=Var(y¯−β1^x¯)=Var((−x¯)β1^+y¯)=Var((−x¯)β1^)+Var(y¯)=(−x¯)2Var(β1^)+0=(x¯)2Var(β1^)+0=σ2(x¯)2∑i=1n(xi−x¯)2Var(β0^)=Var(y¯−β1^x¯)=Var((−x¯)β1^+y¯)=Var((−x¯)β1^)+Var(y¯)=(−x¯)2Var(β1^)+0=(x¯)2Var(β1^)+0=σ2(x¯)2∑i=1n(xi−x¯)2\begin{align*} Var(\hat{\beta_0}) &= Var(\bar{y} - \hat{\beta_1}\bar{x}) \\ &= Var((-\bar{x})\hat{\beta_1}+\bar{y}) \\ &= Var((-\bar{x})\hat{\beta_1})+Var(\bar{y}) \\ &= (-\bar{x})^2 Var(\hat{\beta_1}) + 0 \\ &= (\bar{x})^2 Var(\hat{\beta_1}) + 0 \\ &= \frac{\sigma^2 (\bar{x})^2}{\displaystyle\sum\limits_{i=1}^n (x_i - \bar{x})^2} \end{align*} ma questo è …


3
Perché abbiamo bisogno del Bootstrapping?
Attualmente sto leggendo "All of Statistics" di Larry Wasserman e perplesso per qualcosa che ha scritto nel capitolo sulla stima delle funzioni statistiche di modelli non parametrici. Ha scritto "A volte possiamo trovare l'errore standard stimato di una funzione statistica eseguendo alcuni calcoli. Tuttavia in altri casi non è ovvio …

4
Valore atteso della mediana del campione data la media del campione
Sia YYY denota la mediana e sia X¯X¯\bar{X} la media, di un campione casuale di dimensione n=2k+1n=2k+1n=2k+1 da una distribuzione che è N(μ,σ2)N(μ,σ2)N(\mu,\sigma^2) . Come posso calcolare E(Y|X¯=x¯)E(Y|X¯=x¯)E(Y|\bar{X}=\bar{x}) ? Intuitivamente, a causa del presupposto della normalità, ha senso affermare che E(Y|X¯=x¯)=x¯E(Y|X¯=x¯)=x¯E(Y|\bar{X}=\bar{x})=\bar{x} e in effetti questa è la risposta corretta. Può …



4
Modello lineare classico - selezione del modello
Ho un modello lineare classico, con 5 possibili regressori. Non sono correlati tra loro e hanno una correlazione piuttosto bassa con la risposta. Sono arrivato a un modello in cui 3 dei regressori hanno coefficienti significativi per la loro statistica t (p &lt;0,05). L'aggiunta di una o entrambe le restanti …

1
Derivazione del cambiamento di variabili di una funzione di densità di probabilità?
Nel libro riconoscimento del modello e apprendimento automatico (formula 1.27), fornisce py(y)=px(x)∣∣∣dxdy∣∣∣=px(g(y))|g′(y)|py(y)=px(x)|dxdy|=px(g(y))|g′(y)|p_y(y)=p_x(x) \left | \frac{d x}{d y} \right |=p_x(g(y)) | g'(y) | dovex=g(y)x=g(y)x=g(y),px(x)px(x)p_x(x)è il pdf che corrisponde apy(y)py(y)p_y(y)rispetto alla modifica della variabile. Il libro dice che le osservazioni che rientrano nell'intervallo , per piccoli valori di δ x , verranno …

2
Il pdf di
Supponiamo che X1,X2,...,XnX1,X2,...,XnX_1, X_2,...,X_n è tra N(μ,σ2)N(μ,σ2)N(\mu,\sigma^2) con sconosciuto ∈ Rμ∈Rμ∈R\mu \in \mathcal R e σ2&gt;0σ2&gt;0\sigma^2>0 Sia Z=X1−X¯S,Z=X1−X¯S,Z=\frac{X_1-\bar{X}}{S},S è la deviazione standard qui. Si può dimostrare che ZZZ ha il pdf di Lebesgue f(z)=n−−√Γ(n−12)π−−√(n−1)Γ(n−22)[1−nz2(n−1)2]n/2−2I(0,(n−1)/n√)(|Z|)f(z)=nΓ(n−12)π(n−1)Γ(n−22)[1−nz2(n−1)2]n/2−2I(0,(n−1)/n)(|Z|)f(z)=\frac{\sqrt{n} \Gamma\left(\frac{n-1}{2}\right)}{\sqrt{\pi}(n-1)\Gamma\left(\frac{n-2}{2}\right)}\left[1-\frac{nz^2}{(n-1)^2}\right]^{n/2-2}I_{(0,(n-1)/\sqrt{n})}(|Z|) La mia domanda è quindi come ottenere questo pdf? La domanda è da qui nell'esempio …
15 self-study  umvue 


1
Qual è l'intuizione dietro i campioni scambiabili sotto l'ipotesi nulla?
I test di permutazione (chiamati anche test di randomizzazione, test di ri-randomizzazione o test esatto) sono molto utili e sono utili quando l'assunzione della distribuzione normale richiesta da per esempio t-testnon è soddisfatta e quando la trasformazione dei valori per classifica del test non parametrici come Mann-Whitney-U-testquesto porterebbero alla perdita …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.