Domande taggate «lme4-nlme»

lme4 e nlme sono pacchetti R utilizzati per il montaggio di modelli di effetti misti lineari, lineari generalizzati e non lineari. Per domande generali sui modelli misti utilizzare il tag [modello misto].

4
L'accuratezza della macchina con incremento gradiente diminuisce all'aumentare del numero di iterazioni
Sto sperimentando l'algoritmo della macchina per aumentare il gradiente tramite il caretpacchetto in R. Utilizzando un piccolo set di dati di ammissione al college, ho eseguito il seguente codice: library(caret) ### Load admissions dataset. ### mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv") ### Create yes/no levels for admission. ### mydata$admit_factor[mydata$admit==0] <- "no" mydata$admit_factor[mydata$admit==1] <- …
15 machine-learning  caret  boosting  gbm  hypothesis-testing  t-test  panel-data  psychometrics  intraclass-correlation  generalized-linear-model  categorical-data  binomial  model  intercept  causality  cross-correlation  distributions  ranks  p-value  z-test  sign-test  time-series  references  terminology  cross-correlation  definition  probability  distributions  beta-distribution  inverse-gamma  missing-data  paired-comparisons  paired-data  clustered-standard-errors  cluster-sample  time-series  arima  logistic  binary-data  odds-ratio  medicine  hypothesis-testing  wilcoxon-mann-whitney  unsupervised-learning  hierarchical-clustering  neural-networks  train  clustering  k-means  regression  ordinal-data  change-scores  machine-learning  experiment-design  roc  precision-recall  auc  stata  multilevel-analysis  regression  fitting  nonlinear  jmp  r  data-visualization  gam  gamm4  r  lme4-nlme  many-categories  regression  causality  instrumental-variables  endogeneity  controlling-for-a-variable 


1
Qual è l'intuizione dietro i campioni scambiabili sotto l'ipotesi nulla?
I test di permutazione (chiamati anche test di randomizzazione, test di ri-randomizzazione o test esatto) sono molto utili e sono utili quando l'assunzione della distribuzione normale richiesta da per esempio t-testnon è soddisfatta e quando la trasformazione dei valori per classifica del test non parametrici come Mann-Whitney-U-testquesto porterebbero alla perdita …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 





2
Errore LME () - limite di iterazione raggiunto
Nello specificare un modello di effetti misti incrociati, sto cercando di includere interazioni. Tuttavia, viene visualizzato il seguente messaggio di errore: Error in lme.formula(rate ~ nozzle, random = ~nozzle | operator, data = Flow) : nlminb problem, convergence error code = 1 message = iteration limit reached without convergence (10) …




1
Modellazione lineare ad effetti misti con dati di studio gemellati
Supponiamo di avere una certa certa variabile di risposta yijyijy_{ij} che è stato misurato da jjj esima sibling iii esima famiglia. Inoltre, alcuni dati comportamentali xijxijx_{ij} sono stati raccolti contemporaneamente da ciascun soggetto. Sto cercando di analizzare la situazione con il seguente modello lineare a effetti misti: yij=α0+α1xij+δ1ixij+εijyij=α0+α1xij+δ1ixij+εijy_{ij} = \alpha_0 …


1
Equivalenza di (0 + fattore | gruppo) e (1 | gruppo) + (1 | gruppo: fattore) specifiche dell'effetto casuale in caso di simmetria composta
Douglas Bates afferma che i seguenti modelli sono equivalenti "se la matrice varianza-covarianza per gli effetti casuali con valori vettoriali ha una forma speciale, chiamata simmetria composta" ( diapositiva 91 in questa presentazione ): m1 <- lmer(y ~ factor + (0 + factor|group), data) m2 <- lmer(y ~ factor + …


Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.