Domande taggate «standardization»

Di solito si riferisce alla "standardizzazione z" che sta spostando e riscalando i dati per assicurare che abbiano una varianza media e unitaria nulla. Sono possibili anche altre "standardizzazioni".



1
Variabile dipendente standardizzata all'interno di un gruppo nei modelli di dati del pannello?
Ha senso la standardizzazione di una variabile dipendente all'interno del gruppo identificativo? Il seguente documento di lavoro (rallentamento della deforestazione nell'Amazzonia legale; Prezzi o politiche ?, pdf ) utilizza una variabile dipendente standardizzata per analizzare l'effetto del cambiamento generale delle politiche in Brasile sulla deforestazione. Yn e wI t= YI …




1
Perché Anova () e drop1 () hanno fornito risposte diverse per i GLMM?
Ho un GLMM del modulo: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Quando uso drop1(model, test="Chi"), ottengo risultati diversi rispetto a quelli che utilizzo Anova(model, type="III")dal pacchetto auto o summary(model). Questi ultimi due danno le stesse risposte. Usando un mucchio di dati fabbricati, …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 




1
Quale modello di apprendimento profondo può classificare categorie che non si escludono a vicenda
Esempi: ho una frase nella descrizione del lavoro: "Ingegnere senior Java nel Regno Unito". Voglio usare un modello di apprendimento profondo per prevederlo in 2 categorie: English e IT jobs. Se uso il modello di classificazione tradizionale, posso solo prevedere 1 etichetta con la softmaxfunzione all'ultimo livello. Quindi, posso usare …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

1
Standardizzare le funzionalità quando si utilizza LDA come fase di pre-elaborazione
Se un'analisi discriminante lineare multi-classe (o leggo talvolta anche analisi discriminante multipla) viene utilizzata per la riduzione della dimensionalità (o trasformazione dopo la riduzione della dimensionalità tramite PCA), capisco che in generale una "normalizzazione del punteggio Z" (o standardizzazione) di le funzionalità non saranno necessarie, anche se misurate su scale …

6
Come raggruppare / standardizzare le variabili in R?
Bloccato . Questa domanda e le sue risposte sono bloccate perché la domanda è fuori tema ma ha un significato storico. Al momento non accetta nuove risposte o interazioni. Le funzioni che conosco includono la scala dalla base R, il riscalamento da ARM. Forse il modo migliore sarebbe usare una …
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.