Domande taggate «stochastic-processes»

Un processo stocastico descrive l'evoluzione di variabili / sistemi casuali nel tempo e / o nello spazio e / o in qualsiasi altro set di indici. Ha applicazioni in settori quali econometria, condizioni meteorologiche, elaborazione del segnale, ecc. Esempi: processo gaussiano, processo di Markov, ecc.


3
Qual è la differenza tra modello deterministico e stocastico?
Modello lineare semplice: x=αt+ϵtx=αt+ϵtx=\alpha t + \epsilon_t dove ~ iidϵtϵt\epsilon_tN(0,σ2)N(0,σ2)N(0,\sigma^2) con eE(x)=αtE(x)=αtE(x) = \alpha tVar(x)=σ2Var(x)=σ2Var(x)=\sigma^2 AR (1): Xt=αXt−1+ϵtXt=αXt−1+ϵtX_t =\alpha X_{t-1} + \epsilon_t dove ~ iidϵtϵt\epsilon_tN(0,σ2)N(0,σ2)N(0,\sigma^2) con eE(x)=αtE(x)=αtE(x) = \alpha tVar(x)=tσ2Var(x)=tσ2Var(x)=t\sigma^2 Quindi un semplice modello lineare è considerato un modello deterministico mentre un modello AR (1) è considerato un modello stocahstic. …


1
Il problema della pesca
Supponiamo che tu voglia andare a pescare nel vicino lago dalle 8:00 alle 20:00. A causa della pesca eccessiva, è stata istituita una legge che dice che puoi pescare solo un pesce al giorno. Quando catturi un pesce, puoi scegliere di tenerlo (e quindi tornare a casa con quel pesce), …

1
Come verificare se lo "stato precedente" ha influenza sullo "stato successivo" in R
Immagina una situazione: abbiamo record storici (20 anni) di tre mine. La presenza di argento aumenta la probabilità di trovare oro nel prossimo anno? Come testare questa domanda? Ecco alcuni dati di esempio: mine_A <- c("silver","rock","gold","gold","gold","gold","gold", "rock","rock","rock","rock","silver","rock","rock", "rock","rock","rock","silver","rock","rock") mine_B <- c("rock","rock","rock","rock","silver","rock","rock", "silver","gold","gold","gold","gold","gold","rock", "silver","rock","rock","rock","rock","rock") mine_C <- c("rock","rock","silver","rock","rock","rock","rock", "rock","silver","rock","rock","rock","rock","silver", "gold","gold","gold","gold","gold","gold") time <- …

1
Come posso incorporare un valore anomalo innovativo all'osservazione 48 nel mio modello ARIMA?
Sto lavorando su un set di dati. Dopo aver usato alcune tecniche di identificazione del modello, sono uscito con un modello ARIMA (0,2,1). Ho usato la detectIOfunzione nel pacchetto TSAin R per rilevare un valore anomalo innovativo (IO) alla 48a osservazione del mio set di dati originale. Come posso incorporare …
10 r  time-series  arima  outliers  hypergeometric  fishers-exact  r  time-series  intraclass-correlation  r  logistic  glmm  clogit  mixed-model  spss  repeated-measures  ancova  machine-learning  python  scikit-learn  distributions  data-transformation  stochastic-processes  web  standard-deviation  r  machine-learning  spatial  similarities  spatio-temporal  binomial  sparse  poisson-process  r  regression  nonparametric  r  regression  logistic  simulation  power-analysis  r  svm  random-forest  anova  repeated-measures  manova  regression  statistical-significance  cross-validation  group-differences  model-comparison  r  spatial  model-evaluation  parallel-computing  generalized-least-squares  r  stata  fitting  mixture  hypothesis-testing  categorical-data  hypothesis-testing  anova  statistical-significance  repeated-measures  likert  wilcoxon-mann-whitney  boxplot  statistical-significance  confidence-interval  forecasting  prediction-interval  regression  categorical-data  stata  least-squares  experiment-design  skewness  reliability  cronbachs-alpha  r  regression  splines  maximum-likelihood  modeling  likelihood-ratio  profile-likelihood  nested-models 

1
Densità di robot che eseguono camminate casuali in un grafico geometrico casuale infinito
Considera un grafico geometrico casuale infinito in cui le posizioni dei nodi seguono un processo di punto di Poisson con densità e gli spigoli sono posizionati tra i nodi più vicini di . Pertanto, la lunghezza dei bordi segue il seguente PDF:ρρ\rhoddd f(l)={2ld2l≤d0l>df(l)={2ld2l≤d0l>d f(l)= \begin{cases} \frac{2 l}{d^2} \;\quad l \le …



1
Valore “nascosto” della variabile categoriale della regressione lineare
Questo è solo un esempio che ho riscontrato più volte, quindi non ho dati di esempio. Esecuzione di un modello di regressione lineare in R: a.lm = lm(Y ~ x1 + x2) x1è una variabile continua. x2è categorico e ha tre valori, ad esempio "Basso", "Medio" e "Alto". Tuttavia, l'output …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 

4
Come interpretare una curva di sopravvivenza del modello di rischio Cox?
Come si interpreta una curva di sopravvivenza dal modello di rischio proporzionale cox? In questo esempio di giocattolo, supponiamo di avere un modello di rischio proporzionale cox su agevariabile nei kidneydati e generare la curva di sopravvivenza. library(survival) fit <- coxph(Surv(time, status)~age, data=kidney) plot(conf.int="none", survfit(fit)) grid() Ad esempio, al momento …
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.