Domande taggate «variance»

La deviazione quadrata prevista di una variabile casuale dalla sua media; oppure, la deviazione quadrata media dei dati sulla loro media.


1
Utilizzo della mediana per il calcolo della varianza
Ho una variabile casuale 1-D che è estremamente distorta. Per normalizzare questa distribuzione, voglio usare la mediana piuttosto che la media. la mia domanda è questa: posso calcolare la varianza della distribuzione usando la mediana nella formula anziché la media? cioè posso sostituire Var(X)=∑[(Xi−mean(X))2]/nVar(X)=∑[(Xi−mean(X))2]/n \mathrm{Var}(X) = \sum[(X_i - \mathrm{mean}(X))^2]/n con …
10 variance  mean  median 

2
Perché PCA massimizza la varianza totale della proiezione?
Christopher Bishop scrive nel suo libro Pattern Recognition and Machine Learning una dimostrazione che ogni componente principale consecutivo massimizza la varianza della proiezione in una dimensione, dopo che i dati sono stati proiettati nello spazio ortogonale ai componenti precedentemente selezionati. Altri mostrano prove simili. Tuttavia, ciò dimostra solo che ogni …

4
Modello di storia degli eventi a tempo discreto (Sopravvivenza) in R
Sto cercando di adattare un modello a tempo discreto in R, ma non sono sicuro di come farlo. Ho letto che puoi organizzare la variabile dipendente in diverse righe, una per ogni osservazione temporale e utilizzare la glmfunzione con un collegamento logit o cloglog. In questo senso, ho tre colonne: …
10 r  survival  pca  sas  matlab  neural-networks  r  logistic  spatial  spatial-interaction-model  r  time-series  econometrics  var  statistical-significance  t-test  cross-validation  sample-size  r  regression  optimization  least-squares  constrained-regression  nonparametric  ordinal-data  wilcoxon-signed-rank  references  neural-networks  jags  bugs  hierarchical-bayesian  gaussian-mixture  r  regression  svm  predictive-models  libsvm  scikit-learn  probability  self-study  stata  sample-size  spss  wilcoxon-mann-whitney  survey  ordinal-data  likert  group-differences  r  regression  anova  mathematical-statistics  normal-distribution  random-generation  truncation  repeated-measures  variance  variability  distributions  random-generation  uniform  regression  r  generalized-linear-model  goodness-of-fit  data-visualization  r  time-series  arima  autoregressive  confidence-interval  r  time-series  arima  autocorrelation  seasonality  hypothesis-testing  bayesian  frequentist  uninformative-prior  correlation  matlab  cross-correlation 

1
Che cos'è la varianza puntuale?
Durante la lettura di The Elements of Statistical Learning , ho incontrato diverse volte il termine "varianza puntuale". Mentre ho una vaga idea di cosa significhi probabilmente, sarei grato di saperlo Come viene definito? Come viene derivato?
10 variance 

4
Varianza dei resistori in parallelo
Supponiamo di avere una serie di resistori R, tutti distribuiti con media μ e varianza σ. Considera una sezione di un circuito con il seguente layout: (r) || (r + r) || (R + R + R). La resistenza equivalente di ogni parte è r, 2r e 3r. La varianza …

1
Valore “nascosto” della variabile categoriale della regressione lineare
Questo è solo un esempio che ho riscontrato più volte, quindi non ho dati di esempio. Esecuzione di un modello di regressione lineare in R: a.lm = lm(Y ~ x1 + x2) x1è una variabile continua. x2è categorico e ha tre valori, ad esempio "Basso", "Medio" e "Alto". Tuttavia, l'output …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 



2
Decomposizione della varianza: termine per errore di previsione al quadrato atteso meno errore irriducibile
Hastie et al. "The Elements of Statistical Learning" (2009) considera un processo di generazione di dati con e .E ( ε ) = 0 Var ( ε ) = σ 2 εY=f(X)+εY=f(X)+ε Y = f(X) + \varepsilon E(ε)=0E(ε)=0\mathbb{E}(\varepsilon)=0Var(ε)=σ2εVar(ε)=σε2\text{Var}(\varepsilon)=\sigma^2_{\varepsilon} Presentano la seguente decomposizione della variazione di polarizzazione dell'errore di previsione al …



2
Varianza della media campionaria del campione bootstrap
Sia osservazioni distinte (nessun legame). Lascia che denoti un campione bootstrap (un campione dal CDF empirico) e che . Trova e .X1,...,XnX1,...,XnX_{1},...,X_{n}X∗1,...,X∗nX1∗,...,Xn∗X_{1}^{*},...,X_{n}^{*}X¯∗n=1n∑ni=1X∗iX¯n∗=1n∑i=1nXi∗\bar{X}_{n}^{*}=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{*}E(X¯∗n)E(X¯n∗)E(\bar{X}_{n}^{*})Var(X¯∗n)Var(X¯n∗)\mathrm{Var}(\bar{X}_{n}^{*}) Quello che ho finora è che è ciascuno con probabilità quindi ed che dà X∗iXi∗X_{i}^{*}X1,...,XnX1,...,XnX_{1},...,X_{n}1n1n\frac{1}{n}E(X∗i)=1nE(X1)+...+1nE(Xn)=nμn=μE(Xi∗)=1nE(X1)+...+1nE(Xn)=nμn=μ E(X_{i}^{*})=\frac{1}{n}E(X_{1})+...+\frac{1}{n}E(X_{n})=\frac{n\mu}{n}=\mu E(X∗2i)=1nE(X21)+...+1nE(X2n)=n(μ2+σ2)n=μ2+σ2,E(Xi∗2)=1nE(X12)+...+1nE(Xn2)=n(μ2+σ2)n=μ2+σ2,E(X_{i}^{*2})=\frac{1}{n}E(X_{1}^{2})+...+\frac{1}{n}E(X_{n}^{2})=\frac{n(\mu^{2}+\sigma^{2})}{n}=\mu^{2}+\sigma^{2}\>, Var(X∗i)=E(X∗2i)−(E(X∗i))2=μ2+σ2−μ2=σ2.Var(Xi∗)=E(Xi∗2)−(E(Xi∗))2=μ2+σ2−μ2=σ2. \mathrm{Var}(X_{i}^{*})=E(X_{i}^{*2})-(E(X_{i}^{*}))^{2}=\mu^{2}+\sigma^{2}-\mu^{2}=\sigma^{2} \>. Quindi, e poiché ' sono indipendenti. Questo dàE(X¯∗n)=E(1n∑i=1nX∗i)=1n∑i=1nE(X∗i)=nμn=μE(X¯n∗)=E(1n∑i=1nXi∗)=1n∑i=1nE(Xi∗)=nμn=μE(\bar{X}_{n}^{*})=E(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{*})=\frac{1}{n}\sum_{i=1}^{n}E(X_{i}^{*})=\frac{n\mu}{n}=\mu …



Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.