Domande taggate «self-study»

Un esercizio di routine da un libro di testo, un corso o un test utilizzato per una lezione o uno studio autonomo. La politica di questa comunità è di "fornire suggerimenti utili" per tali domande piuttosto che risposte complete.



4
Che cos'è una "distribuzione strettamente positiva"?
Sto leggendo "Causality" della Judea Pearl (seconda edizione 2009) e nella sezione 1.1.5 Indipendenza condizionale e Graphoids, afferma: Di seguito è riportato un elenco (parziale) di proprietà soddisfatte dalla relazione di indipendenza condizionale (X_ || _Y | Z). Simmetria: (X_ || _ Y | Z) ==> (Y_ || _X | …

2
Convergenza in Distribution \ CLT
Dato che , il distr condizionale. di è . ha distr marginale. di Poisson ( ), è una costante positiva.N=nN=nN = nYYYχ2(2n)χ2(2n)\chi ^2(2n)NNNθθ\thetaθθ\theta Mostra che, come , nella distribuzione.( Y - E ( Y ) ) / √θ→∞θ→∞\theta \rightarrow \infty (Y−E(Y))/Var(Y)−−−−−−√→N(0,1) (Y−E(Y))/Var⁡(Y)→N(0,1)\space \space (Y - E(Y))/ \sqrt{\operatorname{Var}(Y)} \rightarrow N(0,1) Qualcuno …

1
Esempio di CLT quando non esistono momenti
ConsideraXn=⎧⎩⎨1−12kw.p. (1−2−n)/2w.p. (1−2−n)/2w.p. 2−k for k>nXn={1w.p. (1−2−n)/2−1w.p. (1−2−n)/22kw.p. 2−k for k>nX_n = \begin{cases} 1 & \text{w.p. } (1 - 2^{-n})/2\\ -1 & \text{w.p. } (1 - 2^{-n})/2\\ 2^k & \text{w.p. } 2^{-k} \text{ for } k > n\\ \end{cases} Devo dimostrare che anche se questo ha infiniti momenti,n−−√(X¯n)→dN(0,1)n(X¯n)→dN(0,1)\sqrt{n}(\bar{X}_n) \overset{d}{\to} N(0,1) …

2
Varianza della media campionaria del campione bootstrap
Sia osservazioni distinte (nessun legame). Lascia che denoti un campione bootstrap (un campione dal CDF empirico) e che . Trova e .X1,...,XnX1,...,XnX_{1},...,X_{n}X∗1,...,X∗nX1∗,...,Xn∗X_{1}^{*},...,X_{n}^{*}X¯∗n=1n∑ni=1X∗iX¯n∗=1n∑i=1nXi∗\bar{X}_{n}^{*}=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{*}E(X¯∗n)E(X¯n∗)E(\bar{X}_{n}^{*})Var(X¯∗n)Var(X¯n∗)\mathrm{Var}(\bar{X}_{n}^{*}) Quello che ho finora è che è ciascuno con probabilità quindi ed che dà X∗iXi∗X_{i}^{*}X1,...,XnX1,...,XnX_{1},...,X_{n}1n1n\frac{1}{n}E(X∗i)=1nE(X1)+...+1nE(Xn)=nμn=μE(Xi∗)=1nE(X1)+...+1nE(Xn)=nμn=μ E(X_{i}^{*})=\frac{1}{n}E(X_{1})+...+\frac{1}{n}E(X_{n})=\frac{n\mu}{n}=\mu E(X∗2i)=1nE(X21)+...+1nE(X2n)=n(μ2+σ2)n=μ2+σ2,E(Xi∗2)=1nE(X12)+...+1nE(Xn2)=n(μ2+σ2)n=μ2+σ2,E(X_{i}^{*2})=\frac{1}{n}E(X_{1}^{2})+...+\frac{1}{n}E(X_{n}^{2})=\frac{n(\mu^{2}+\sigma^{2})}{n}=\mu^{2}+\sigma^{2}\>, Var(X∗i)=E(X∗2i)−(E(X∗i))2=μ2+σ2−μ2=σ2.Var(Xi∗)=E(Xi∗2)−(E(Xi∗))2=μ2+σ2−μ2=σ2. \mathrm{Var}(X_{i}^{*})=E(X_{i}^{*2})-(E(X_{i}^{*}))^{2}=\mu^{2}+\sigma^{2}-\mu^{2}=\sigma^{2} \>. Quindi, e poiché ' sono indipendenti. Questo dàE(X¯∗n)=E(1n∑i=1nX∗i)=1n∑i=1nE(X∗i)=nμn=μE(X¯n∗)=E(1n∑i=1nXi∗)=1n∑i=1nE(Xi∗)=nμn=μE(\bar{X}_{n}^{*})=E(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{*})=\frac{1}{n}\sum_{i=1}^{n}E(X_{i}^{*})=\frac{n\mu}{n}=\mu …

2
Aspettativa del quoziente di somme di variabili casuali IID (foglio di lavoro dell'Università di Cambridge)
Mi sto preparando per un'intervista che richiede una discreta conoscenza delle probabilità di base (almeno per superare l'intervista stessa). Sto lavorando attraverso il foglio qui sotto dai miei giorni da studente come revisione. Per lo più è stato abbastanza semplice, ma sono completamente perplesso sulla domanda 12. http://www.trin.cam.ac.uk/dpk10/IA/exsheet2.pdf Qualsiasi aiuto …

3
Libri sull'ecologia statistica?
So che questa domanda è stata posta prima: libro di consultazione per studi ecologici ma non è quello che sto cercando. Quello che sto cercando è se qualcuno potesse raccomandare un buon libro (o un riferimento canonico) sull'ecologia statistica? Ho un'ottima conoscenza delle statistiche, quindi il libro potrebbe davvero essere …


1
Come confrontare gli eventi osservati con quelli previsti?
Supponiamo di avere un campione di frequenze di 4 possibili eventi: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 e ho le probabilità attese dei miei eventi: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 Con la somma delle frequenze osservate dei …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 



2
Calcola la curva ROC per i dati
Quindi, ho 16 prove in cui sto cercando di autenticare una persona da un tratto biometrico usando Hamming Distance. La mia soglia è impostata su 3,5. I miei dati sono di seguito e solo la versione di prova 1 è un vero positivo: Trial Hamming Distance 1 0.34 2 0.37 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 

1
Trovare densità marginali di
Come dice il titolo, sto cercando le densità marginali dif(x,y)=c1−x2−y2−−−−−−−−−√,x2+y2≤1.f(x,y)=c1−x2−y2,x2+y2≤1.f (x,y) = c \sqrt{1 - x^2 - y^2}, x^2 + y^2 \leq 1. Finora ho trovato come . L'ho capito attraverso la conversione di in coordinate polari e l'integrazione su , motivo per cui sono bloccato sulla porzione di densità …


Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.