Domande taggate «chi-squared»

Un test (in genere di distribuzione, indipendenza o bontà di adattamento) o una famiglia di distribuzioni correlate a tale test.


1
R / mgcv: Perché i prodotti tensor te () e ti () producono superfici diverse?
Il mgcvpacchetto per Rha due funzioni per adattare le interazioni del prodotto tensore: te()e ti(). Comprendo la divisione di base del lavoro tra i due (adattamento di un'interazione non lineare rispetto alla scomposizione di questa interazione in effetti principali e un'interazione). Quello che non capisco è perché te(x1, x2)e ti(x1) …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 



2
Aspettativa di
Lascia che X1X1X_1 , X2X2X_2 , ⋯⋯\cdots , Xd∼N(0,1)Xd∼N(0,1)X_d \sim \mathcal{N}(0, 1) e siano indipendenti. Qual è l'aspettativa di X41(X21+⋯+X2d)2X14(X12+⋯+Xd2)2\frac{X_1^4}{(X_1^2 + \cdots + X_d^2)^2} ? È facile trovare E(X21X21+⋯+X2d)=1dE(X12X12+⋯+Xd2)=1d\mathbb{E}\left(\frac{X_1^2}{X_1^2 + \cdots + X_d^2}\right) = \frac{1}{d} per simmetria. Ma non so come trovare le aspettative di X41(X21+⋯+X2d)2X14(X12+⋯+Xd2)2\frac{X_1^4}{(X_1^2 + \cdots + X_d^2)^2} …

1
Test chi quadrato a due campioni
Questa domanda è tratta dal libro di Van der Vaart Asymptotic Statistics, pag. 253. # 3: Supponiamo che e siano vettori multinomiali indipendenti con parametri e . Sotto l'ipotesi nulla che mostriXmXm\mathbf{X}_mYnYn\mathbf{Y}_n(m,a1,…,ak)(m,a1,…,ak)(m,a_1,\ldots,a_k)(n,b1,…,bk)(n,b1,…,bk)(n,b_1,\ldots,b_k)ai=biai=bia_i=b_i ∑i=1k(Xm,i−mc^i)2mc^i+∑i=1k(Yn,i−nc^i)2nc^i∑i=1k(Xm,i−mc^i)2mc^i+∑i=1k(Yn,i−nc^i)2nc^i\sum_{i=1}^k \dfrac{(X_{m,i} - m\hat{c}_i)^2}{m\hat{c}_i} + \sum_{i=1}^k \dfrac{(Y_{n,i} - n\hat{c}_i)^2}{n\hat{c}_i} ha distribuzione . dove .c i = ( X …


3
G-test vs test chi-quadrato di Pearson
Sto testando l'indipendenza in una tabella di contingenzaNon so se il G-test o il test chi-quadrato di Pearson siano migliori. La dimensione del campione è in centinaia ma ci sono alcuni conteggi di celle bassi. Come indicato nella pagina di Wikipedia , l'approssimazione alla distribuzione chi-quadrata è migliore per il …


1
Perché Anova () e drop1 () hanno fornito risposte diverse per i GLMM?
Ho un GLMM del modulo: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Quando uso drop1(model, test="Chi"), ottengo risultati diversi rispetto a quelli che utilizzo Anova(model, type="III")dal pacchetto auto o summary(model). Questi ultimi due danno le stesse risposte. Usando un mucchio di dati fabbricati, …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 

2
Intervallo di confidenza per chi-quadrato
Sto cercando di trovare una soluzione per confrontare due test "chi-quadrato di bontà di adattamento". Più precisamente, voglio confrontare i risultati di due esperimenti indipendenti. In questi esperimenti gli autori hanno usato il chi-quadrato di bontà di adattamento per confrontare ipotesi casuali (frequenze attese) con frequenze osservate. I due esperimenti …





Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.