Domande taggate «multivariate-analysis»

Analizza dove vi è più di una variabile analizzata contemporaneamente e queste variabili sono o dipendenti (risposta) o le uniche nell'analisi. Ciò può essere contrastato con l'analisi "multipla" o "multivariabile", che implica più di una variabile predittore (indipendente).




3
Un esempio: regressione di LASSO utilizzando glmnet per il risultato binario
Sto iniziando a dilettarsi con l'uso di glmnetcon LASSO Regressione dove il mio risultato di interesse è dicotomica. Di seguito ho creato un piccolo frame di dati finti: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) …
78 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 



5
La regolazione dei valori di p in una regressione multipla per confronti multipli è una buona idea?
Supponiamo che tu sia un ricercatore / econometrico di scienze sociali che cerca di trovare predittori rilevanti della domanda di un servizio. Sono disponibili 2 variabili risultato / dipendente che descrivono la domanda (utilizzando il servizio sì / no e il numero di occasioni). Hai 10 variabili predittive / indipendenti …

3
Qual è l'intuizione dietro le distribuzioni gaussiane condizionate?
Supponiamo che X∼N2(μ,Σ)X∼N2(μ,Σ)\mathbf{X} \sim N_{2}(\mathbf{\mu}, \mathbf{\Sigma}) . Quindi la distribuzione condizionale di X1X1X_1 dato che X2=x2X2=x2X_2 = x_2 è multivariato normalmente distribuito con media: E[P(X1|X2=x2)]=μ1+σ12σ22(x2−μ2)E[P(X1|X2=x2)]=μ1+σ12σ22(x2−μ2) E[P(X_1 | X_2 = x_2)] = \mu_1+\frac{\sigma_{12}}{\sigma_{22}}(x_2-\mu_2) and variance: Var[P(X1|X2=x2)]=σ11−σ212σ22Var[P(X1|X2=x2)]=σ11−σ122σ22{\rm Var}[P(X_1 | X_2 = x_2)] = \sigma_{11}-\frac{\sigma_{12}^{2}}{\sigma_{22}} It makes sense that the variance would decrease …

3
Interpretazione del predittore e / o della risposta trasformati in tronchi
Mi chiedo se fa differenza nell'interpretazione se solo le variabili dipendenti, dipendenti e indipendenti, o solo le variabili indipendenti, vengono trasformate in log. Considera il caso di log(DV) = Intercept + B1*IV + Error Posso interpretare il IV come l'aumento percentuale, ma come cambia quando lo faccio log(DV) = Intercept …
46 regression  data-transformation  interpretation  regression-coefficients  logarithm  r  dataset  stata  hypothesis-testing  contingency-tables  hypothesis-testing  statistical-significance  standard-deviation  unbiased-estimator  t-distribution  r  functional-data-analysis  maximum-likelihood  bootstrap  regression  change-point  regression  sas  hypothesis-testing  bayesian  randomness  predictive-models  nonparametric  terminology  parametric  correlation  effect-size  loess  mean  pdf  quantile-function  bioinformatics  regression  terminology  r-squared  pdf  maximum  multivariate-analysis  references  data-visualization  r  pca  r  mixed-model  lme4-nlme  distributions  probability  bayesian  prior  anova  chi-squared  binomial  generalized-linear-model  anova  repeated-measures  t-test  post-hoc  clustering  variance  probability  hypothesis-testing  references  binomial  profile-likelihood  self-study  excel  data-transformation  skewness  distributions  statistical-significance  econometrics  spatial  r  regression  anova  spss  linear-model 

5
In che modo i punteggi di propensione sono diversi dall'aggiunta di covariate in una regressione e quando sono preferiti a quest'ultima?
Ammetto di essere relativamente nuovo ai punteggi di propensione e all'analisi causale. Una cosa che non è ovvio per me come nuovo arrivato è come il "bilanciamento" usando i punteggi di propensione sia matematicamente diverso da quello che succede quando aggiungiamo covariate in una regressione? Cosa c'è di diverso nell'operazione, …


3


5
Come gestire i dati gerarchici / nidificati nell'apprendimento automatico
Spiegherò il mio problema con un esempio. Supponiamo di voler prevedere il reddito di un individuo in base ad alcuni attributi: {Età, Genere, Paese, Regione, Città}. Hai un set di dati di allenamento come questo train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 


Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.