Domande taggate «proportion»

Una proporzione è la frazione di un totale che è di un tipo particolare, o (i) come conteggio di un tipo di cosa da un conteggio totale, o (ii) come componente di una variabile continua.

3
Un esempio: regressione di LASSO utilizzando glmnet per il risultato binario
Sto iniziando a dilettarsi con l'uso di glmnetcon LASSO Regressione dove il mio risultato di interesse è dicotomica. Di seguito ho creato un piccolo frame di dati finti: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) …
78 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 





4
Quali sono i valori corretti per precisione e richiamo nei casi limite?
La precisione è definita come: p = true positives / (true positives + false positives) È corretto che, come true positivese false positivesavvicinarsi a 0, la precisione si avvicina a 1? Stessa domanda da ricordare: r = true positives / (true positives + false negatives) Attualmente sto implementando un test …
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 

1
A che livello un test
BACKGROUND: saltare in sicurezza - è qui per riferimento e per legittimare la domanda. L'apertura di questo documento recita: "Il famoso test di contingenza chi-quadrato di Karl Pearson è derivato da un'altra statistica, chiamata statistica z, basata sulla distribuzione normale. Le versioni più semplici di χ2χ2\chi^2 possono essere dimostrate matematicamente …


1
Interpretazione delle proporzioni che si sommano a una come variabili indipendenti nella regressione lineare
Conosco il concetto di variabili categoriche e la rispettiva codifica delle variabili fittizie che ci consente di adattarci a un livello come base per evitare collinearità. Conosco anche come interpretare le stime dei parametri da tali modelli: il cambiamento previsto nel risultato per un dato livello adattato del predittore categorico, …




5
Come eseguire l'imputazione dei valori in un numero molto elevato di punti dati?
Ho un set di dati molto grande e mancano circa il 5% di valori casuali. Queste variabili sono correlate tra loro. Il seguente set di dati R è solo un esempio di giocattolo con dati correlati fittizi. set.seed(123) # matrix of X variable xmat <- matrix(sample(-1:1, 2000000, replace = TRUE), …
12 r  random-forest  missing-data  data-imputation  multiple-imputation  large-data  definition  moving-window  self-study  categorical-data  econometrics  standard-error  regression-coefficients  normal-distribution  pdf  lognormal  regression  python  scikit-learn  interpolation  r  self-study  poisson-distribution  chi-squared  matlab  matrix  r  modeling  multinomial  mlogit  choice  monte-carlo  indicator-function  r  aic  garch  likelihood  r  regression  repeated-measures  simulation  multilevel-analysis  chi-squared  expected-value  multinomial  yates-correction  classification  regression  self-study  repeated-measures  references  residuals  confidence-interval  bootstrap  normality-assumption  resampling  entropy  cauchy  clustering  k-means  r  clustering  categorical-data  continuous-data  r  hypothesis-testing  nonparametric  probability  bayesian  pdf  distributions  exponential  repeated-measures  random-effects-model  non-independent  regression  error  regression-to-the-mean  correlation  group-differences  post-hoc  neural-networks  r  time-series  t-test  p-value  normalization  probability  moments  mgf  time-series  model  seasonality  r  anova  generalized-linear-model  proportion  percentage  nonparametric  ranks  weighted-regression  variogram  classification  neural-networks  fuzzy  variance  dimensionality-reduction  confidence-interval  proportion  z-test  r  self-study  pdf 

1
Clopper-Pearson per non matematici
Mi chiedevo se qualcuno potesse spiegarmi l'intuizione al di là del Clopper-Pearson CI per le proporzioni. Per quanto ne so, ogni elemento della configurazione include una variazione. Tuttavia, per le proporzioni, anche se la mia proporzione è 0 o 1 (0% o 100%), è possibile calcolare l'IC Clopper-Pearson. Ho provato …

2
Il test
Ho appena letto in una rivista scientifica (molto popolare) piuttosto rispettata (il Primo Ministro tedesco, 02/2013, p.36) su un esperimento interessante (senza fonte, sfortunatamente). Ha attirato la mia attenzione perché intuitivamente dubitavo del significato del risultato, ma le informazioni fornite erano sufficienti per riprodurre i test statistici. I ricercatori si …

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.