Domande taggate «residuals»

I residui di un modello sono i valori effettivi meno i valori previsti. Molti modelli statistici fanno ipotesi sull'errore, che è stimato dai residui.

2
Valutazione dei modelli di regressione logistica
Questa domanda nasce dalla mia attuale confusione su come decidere se un modello logistico è abbastanza buono. Ho modelli che usano lo stato delle coppie progetto individuale due anni dopo che si sono formati come una variabile dipendente. Il risultato ha esito positivo (1) o meno (0). Ho variabili indipendenti …


1
Pacchetto GBM vs. Caret tramite GBM
Ho usato il tuning del modello caret, ma poi rieseguendo il modello usando il gbmpacchetto. Comprendo che il caretpacchetto utilizza gbme l'output dovrebbe essere lo stesso. Tuttavia, solo un rapido test eseguito utilizzando data(iris)mostra una discrepanza nel modello di circa il 5% utilizzando RMSE e R ^ 2 come metrica …


2
Normalmente X e Y distribuiti hanno maggiori probabilità di provocare residui normalmente distribuiti?
Qui viene discussa l'interpretazione errata dell'assunzione della normalità nella regressione lineare (che la "normalità" si riferisce alla X e / o Y anziché ai residui) e il poster chiede se è possibile avere X e Y non distribuiti normalmente e hanno ancora residui normalmente distribuiti. La mia domanda è: normalmente …

5
Come eseguire l'imputazione dei valori in un numero molto elevato di punti dati?
Ho un set di dati molto grande e mancano circa il 5% di valori casuali. Queste variabili sono correlate tra loro. Il seguente set di dati R è solo un esempio di giocattolo con dati correlati fittizi. set.seed(123) # matrix of X variable xmat <- matrix(sample(-1:1, 2000000, replace = TRUE), …
12 r  random-forest  missing-data  data-imputation  multiple-imputation  large-data  definition  moving-window  self-study  categorical-data  econometrics  standard-error  regression-coefficients  normal-distribution  pdf  lognormal  regression  python  scikit-learn  interpolation  r  self-study  poisson-distribution  chi-squared  matlab  matrix  r  modeling  multinomial  mlogit  choice  monte-carlo  indicator-function  r  aic  garch  likelihood  r  regression  repeated-measures  simulation  multilevel-analysis  chi-squared  expected-value  multinomial  yates-correction  classification  regression  self-study  repeated-measures  references  residuals  confidence-interval  bootstrap  normality-assumption  resampling  entropy  cauchy  clustering  k-means  r  clustering  categorical-data  continuous-data  r  hypothesis-testing  nonparametric  probability  bayesian  pdf  distributions  exponential  repeated-measures  random-effects-model  non-independent  regression  error  regression-to-the-mean  correlation  group-differences  post-hoc  neural-networks  r  time-series  t-test  p-value  normalization  probability  moments  mgf  time-series  model  seasonality  r  anova  generalized-linear-model  proportion  percentage  nonparametric  ranks  weighted-regression  variogram  classification  neural-networks  fuzzy  variance  dimensionality-reduction  confidence-interval  proportion  z-test  r  self-study  pdf 




2
Analisi residua della regressione logistica
Questa domanda è un po 'generica e prolissa, ma per favore abbi pazienza. Nella mia applicazione, ho molti set di dati, ciascuno composto da ~ 20.000 punti dati con ~ 50 funzionalità e una singola variabile binaria dipendente. Sto tentando di modellare i set di dati utilizzando la regressione logistica …

1





Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.