Domande taggate «normality-assumption»

Molti metodi statistici presuppongono che i dati siano normalmente distribuiti. Utilizzare questo tag per domande sull'assunzione e il test della normalità o sulla normalità come * proprietà *. Utilizzare [distribuzione normale] per domande sulla distribuzione normale di per sé.



4
Quali sono i valori corretti per precisione e richiamo nei casi limite?
La precisione è definita come: p = true positives / (true positives + false positives) È corretto che, come true positivese false positivesavvicinarsi a 0, la precisione si avvicina a 1? Stessa domanda da ricordare: r = true positives / (true positives + false negatives) Attualmente sto implementando un test …
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 

3
Esempio di distribuzione in cui è necessaria una grande dimensione del campione per il teorema del limite centrale
Alcuni libri affermano che una dimensione del campione di dimensione 30 o superiore è necessaria affinché il teorema del limite centrale fornisca una buona approssimazione per . X¯X¯\bar{X} So che questo non è abbastanza per tutte le distribuzioni. Vorrei vedere alcuni esempi di distribuzioni in cui anche con una grande …

2
Come verificare le differenze tra due gruppi significa quando i dati non sono normalmente distribuiti?
Eliminerò tutti i dettagli e gli esperimenti biologici e citerò solo il problema attuale e quello che ho fatto statisticamente. Vorrei sapere se è giusto e, in caso contrario, come procedere. Se i dati (o la mia spiegazione) non sono abbastanza chiari, proverò a spiegare meglio modificando. Supponiamo che io …







1
Pacchetto GBM vs. Caret tramite GBM
Ho usato il tuning del modello caret, ma poi rieseguendo il modello usando il gbmpacchetto. Comprendo che il caretpacchetto utilizza gbme l'output dovrebbe essere lo stesso. Tuttavia, solo un rapido test eseguito utilizzando data(iris)mostra una discrepanza nel modello di circa il 5% utilizzando RMSE e R ^ 2 come metrica …

2
Abbandono del presupposto della normalità in ANOVA: la curtosi o l'asimmetria sono più importanti?
Modelli statistici lineari applicati di Kutner et al. afferma quanto segue in merito alle deviazioni dall'assunzione della normalità dei modelli ANOVA: la curtosi della distribuzione dell'errore (più o meno al di sopra di una distribuzione normale) è più importante dell'asimmetria della distribuzione in termini di effetti sulle inferenze . Sono …


5
Come eseguire l'imputazione dei valori in un numero molto elevato di punti dati?
Ho un set di dati molto grande e mancano circa il 5% di valori casuali. Queste variabili sono correlate tra loro. Il seguente set di dati R è solo un esempio di giocattolo con dati correlati fittizi. set.seed(123) # matrix of X variable xmat <- matrix(sample(-1:1, 2000000, replace = TRUE), …
12 r  random-forest  missing-data  data-imputation  multiple-imputation  large-data  definition  moving-window  self-study  categorical-data  econometrics  standard-error  regression-coefficients  normal-distribution  pdf  lognormal  regression  python  scikit-learn  interpolation  r  self-study  poisson-distribution  chi-squared  matlab  matrix  r  modeling  multinomial  mlogit  choice  monte-carlo  indicator-function  r  aic  garch  likelihood  r  regression  repeated-measures  simulation  multilevel-analysis  chi-squared  expected-value  multinomial  yates-correction  classification  regression  self-study  repeated-measures  references  residuals  confidence-interval  bootstrap  normality-assumption  resampling  entropy  cauchy  clustering  k-means  r  clustering  categorical-data  continuous-data  r  hypothesis-testing  nonparametric  probability  bayesian  pdf  distributions  exponential  repeated-measures  random-effects-model  non-independent  regression  error  regression-to-the-mean  correlation  group-differences  post-hoc  neural-networks  r  time-series  t-test  p-value  normalization  probability  moments  mgf  time-series  model  seasonality  r  anova  generalized-linear-model  proportion  percentage  nonparametric  ranks  weighted-regression  variogram  classification  neural-networks  fuzzy  variance  dimensionality-reduction  confidence-interval  proportion  z-test  r  self-study  pdf 

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.