Domande taggate «missing-data»

Quando i dati presentano mancanza di informazioni (lacune), ovvero non sono completi. Pertanto, è importante considerare questa funzione quando si esegue un'analisi o un test.

5
Come eseguire l'imputazione dei valori in un numero molto elevato di punti dati?
Ho un set di dati molto grande e mancano circa il 5% di valori casuali. Queste variabili sono correlate tra loro. Il seguente set di dati R è solo un esempio di giocattolo con dati correlati fittizi. set.seed(123) # matrix of X variable xmat <- matrix(sample(-1:1, 2000000, replace = TRUE), …
12 r  random-forest  missing-data  data-imputation  multiple-imputation  large-data  definition  moving-window  self-study  categorical-data  econometrics  standard-error  regression-coefficients  normal-distribution  pdf  lognormal  regression  python  scikit-learn  interpolation  r  self-study  poisson-distribution  chi-squared  matlab  matrix  r  modeling  multinomial  mlogit  choice  monte-carlo  indicator-function  r  aic  garch  likelihood  r  regression  repeated-measures  simulation  multilevel-analysis  chi-squared  expected-value  multinomial  yates-correction  classification  regression  self-study  repeated-measures  references  residuals  confidence-interval  bootstrap  normality-assumption  resampling  entropy  cauchy  clustering  k-means  r  clustering  categorical-data  continuous-data  r  hypothesis-testing  nonparametric  probability  bayesian  pdf  distributions  exponential  repeated-measures  random-effects-model  non-independent  regression  error  regression-to-the-mean  correlation  group-differences  post-hoc  neural-networks  r  time-series  t-test  p-value  normalization  probability  moments  mgf  time-series  model  seasonality  r  anova  generalized-linear-model  proportion  percentage  nonparametric  ranks  weighted-regression  variogram  classification  neural-networks  fuzzy  variance  dimensionality-reduction  confidence-interval  proportion  z-test  r  self-study  pdf 


2
80% dei dati mancanti in una singola variabile
C'è una variabile nei miei dati con l'80% dei dati mancanti. I dati mancano a causa della inesistenza (ovvero della quantità di prestito bancario che la società deve). Mi sono imbattuto in un articolo in cui si afferma che il metodo di regolazione delle variabili fittizie è la soluzione a …

3
Tecniche per la gestione di dati incompleti / mancanti
La mia domanda è rivolta alle tecniche per gestire dati incompleti durante la classificazione / l'addestramento / l'adattamento del modello. Ad esempio, in un set di dati con poche centinaia di righe, ogni riga con cinque dimensioni e un'etichetta di classe come ultimo elemento, la maggior parte dei punti di …

3
Esiste un grave problema con la caduta di osservazioni con valori mancanti durante il calcolo della matrice di correlazione?
Ho questo enorme set di dati con 2500 variabili e 142 osservazioni. Voglio eseguire una correlazione tra la variabile X e il resto delle variabili. Ma per molte colonne mancano voci. Ho provato a farlo in R usando l'argomento "pairwise-complete" ( use=pairwise.complete.obs) e ha prodotto un sacco di correlazioni. Ma …




2
Come gestire i dati inesistenti (non mancanti)?
Non ho mai trovato buoni testi o esempi su come gestire i dati "inesistenti" per gli input in qualsiasi tipo di classificatore. Ho letto molto sui dati mancanti, ma cosa si può fare per i dati che non possono o non esistono in relazione agli input multivariati. Capisco che questa …

2
Probabilità che a qualcuno piacerà l'immagine
Ho il seguente problema: - Abbiamo impostato N persone - Abbiamo impostato K immagini - Ogni persona valuta un certo numero di immagini. Ad una persona potrebbe piacere o meno un'immagine (queste sono le uniche due possibilità). - Il problema è come calcolare la probabilità che ad una persona piaccia …

1
R / mgcv: Perché i prodotti tensor te () e ti () producono superfici diverse?
Il mgcvpacchetto per Rha due funzioni per adattare le interazioni del prodotto tensore: te()e ti(). Comprendo la divisione di base del lavoro tra i due (adattamento di un'interazione non lineare rispetto alla scomposizione di questa interazione in effetti principali e un'interazione). Quello che non capisco è perché te(x1, x2)e ti(x1) …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 

2
La ponderazione basata sulla precisione (ovvero la varianza inversa) è parte integrante della meta-analisi?
La ponderazione basata sulla precisione è fondamentale per la meta-analisi? Borenstein et al. (2009) scrivono che per rendere possibile la meta-analisi tutto ciò che è necessario è che: Gli studi riportano una stima puntuale che può essere espressa come un singolo numero. La varianza può essere calcolata per quella stima …


1
Perché Anova () e drop1 () hanno fornito risposte diverse per i GLMM?
Ho un GLMM del modulo: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Quando uso drop1(model, test="Chi"), ottengo risultati diversi rispetto a quelli che utilizzo Anova(model, type="III")dal pacchetto auto o summary(model). Questi ultimi due danno le stesse risposte. Usando un mucchio di dati fabbricati, …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 

1
Valori mancanti nella variabile di risposta in JAGS
Gelman & Hill (2006) dicono: In Bugs, i risultati mancanti in una regressione possono essere gestiti facilmente includendo semplicemente il vettore di dati, i NA e tutti. I bug modellano esplicitamente la variabile di risultato, quindi è banale usare questo modello per, in effetti, imputare i valori mancanti ad ogni …

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.